Novel Stability Analysis for Recurrent Neural Networks with Multiple Delays via Line Integral-Type L-K Functional

被引:84
作者
Liu, Zhenwei [1 ,2 ]
Zhang, Huaguang [1 ,2 ]
Zhang, Qingling [3 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Sch Informat Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
[2] Northeastern Univ, Key Lab Integrated Automat Proc Ind, Natl Educ Minist, Shenyang 110004, Liaoning, Peoples R China
[3] Northeastern Univ, Inst Syst Sci, Shenyang 110004, Peoples R China
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2010年 / 21卷 / 11期
基金
中国国家自然科学基金;
关键词
Augmented matrix-vector transformation; global asymptotical stability; line integral-type Lyapunov-Krasovskii (L-K) functional; multiple delays; recurrent neural networks (RNNs); GLOBAL EXPONENTIAL STABILITY; ASYMPTOTIC STABILITY; ROBUST STABILITY; CRITERIA;
D O I
10.1109/TNN.2010.2054107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the stability problem of a class of recurrent neural networks (RNNs) with multiple delays. By using an augmented matrix-vector transformation for delays and a novel line integral-type Lyapunov-Krasovskii functional, a less conservative delay-dependent global asymptotical stability criterion is first proposed for RNNs with multiple delays. The obtained stability result is easy to check and improve upon the existing ones. Then, two numerical examples are given to verify the effectiveness of the proposed criterion.
引用
收藏
页码:1710 / 1718
页数:9
相关论文
共 41 条