Anomaly detection in high-energy physics using a quantum autoencoder

被引:45
作者
Ngairangbam, Vishal S. [1 ,2 ]
Spannowsky, Michael [3 ]
Takeuchi, Michihisa [4 ]
机构
[1] Phys Res Lab, Ahmadabad 380009, Gujarat, India
[2] Indian Inst Technol, Discipline Phys, Gandhinagar 382424, Gujarat, India
[3] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
[4] Osaka Univ, Dept Phys, Osaka 5600043, Japan
关键词
D O I
10.1103/PhysRevD.105.095004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The lack of evidence for new interactions and particles at the Large Hadron Collider (LHC) has motivated the high-energy physics community to explore model-agnostic data-analysis approaches to search for new physics. Autoencoders are unsupervised machine learning models based on artificial neural networks, capable of learning background distributions. We study quantum autoencoders based on variational quantum circuits for the problem of anomaly detection at the LHC. For a QCD tt??background and resonant heavy-Higgs signals, we find that a simple quantum autoencoder outperforms classical autoencoders for the same inputs and trains very efficiently. Moreover, this performance is reproducible on present quantum devices. This shows that quantum autoencoders are good candidates for analysing highenergy physics data in future LHC runs.
引用
收藏
页数:15
相关论文
共 73 条
[1]   Dijet Resonance Search with Weak Supervision Using √S=13 TeV pp Collisions in the ATLAS Detector [J].
Aad, G. ;
Abbott, B. ;
Abbott, D. C. ;
Abud, A. Abed ;
Abeling, K. ;
Abhayasinghe, D. K. ;
Abidi, S. H. ;
AbouZeid, O. S. ;
Abraham, N. L. ;
Abramowicz, H. ;
Abreu, H. ;
Abulaiti, Y. ;
Acharya, B. S. ;
Achkar, B. ;
Adam, L. ;
Bourdarios, C. Adam ;
Adamczyk, L. ;
Adamek, L. ;
Adelman, J. ;
Adersberger, M. ;
Adiguzel, A. ;
Adorni, S. ;
Adye, T. ;
Affolder, A. A. ;
Afik, Y. ;
Agapopoulou, C. ;
Agaras, M. N. ;
Aggarwal, A. ;
Agheorghiesei, C. ;
Aguilar-Saavedra, J. A. ;
Ahmad, A. ;
Ahmadov, F. ;
Ahmed, W. S. ;
Ai, X. ;
Aielli, G. ;
Akatsuka, S. ;
Akesson, T. P. A. ;
Akilli, E. ;
Akimov, A., V ;
Al Khoury, K. ;
Alberghi, G. L. ;
Albert, J. ;
Verzini, M. J. Alconada ;
Alderweireldt, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alexa, C. ;
Alexopoulos, T. ;
Alfonsi, A. ;
Alfonsi, F. .
PHYSICAL REVIEW LETTERS, 2020, 125 (13)
[2]   Benchmark data and model independent event classification for the large hadron collider [J].
Aarrestad, Thea ;
van Beekveld, Melissa ;
Bona, Marcella ;
Boveia, Antonio ;
Caron, Sascha ;
Davies, Joe ;
De Simone, Andrea ;
Doglioni, Caterina ;
Duarte, Javier M. ;
Farbin, Amir ;
Gupta, Honey ;
Hendriks, Luc ;
Heinrich, Lukas A. ;
Howarth, James ;
Jawahar, Pratik ;
Jueid, Adil ;
Lastow, Jessica ;
Leinweber, Adam ;
Mamuzic, Judita ;
Merenyi, Erzsebet ;
Morandini, Alessandro ;
Moskvitina, Polina ;
Nellist, Clara ;
Ngadiuba, Jennifer ;
Ostdiek, Bryan ;
Pierini, Maurizio ;
Ravina, Baptiste ;
de Austri, Roberto R. ;
Sekmen, Sezen ;
Touranakou, Mary ;
Vaskeviciute, Marija ;
Vilalta, Ricardo ;
Vlimant, Jean-Roch ;
Verheyen, Rob ;
White, Martin ;
Wulff, Eric ;
Wallin, Erik ;
Wozniak, Kinga A. ;
Zhang, Zhongyi .
SCIPOST PHYSICS, 2022, 12 (01)
[3]  
Abadi M., TENSORFLOW LARGE SCA
[4]  
Abel S., ARXIV210513945
[5]   Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum [J].
Abel, Steven ;
Spannowsky, Michael .
PRX QUANTUM, 2021, 2 (01)
[6]   Quantum computing for quantum tunneling [J].
Abel, Steven ;
Chancellor, Nicholas ;
Spannowsky, Michael .
PHYSICAL REVIEW D, 2021, 103 (01)
[7]   A generic anti-QCD jet tagger [J].
Aguilar-Saavedra, J. A. ;
Collins, Jack ;
Mishra, Rashmish K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11)
[8]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[9]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[10]   JUNIPR: a framework for unsupervised machine learning in particle physics [J].
Andreassen, Anders ;
Feige, Ilya ;
Frye, Christopher ;
Schwartz, Matthew D. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (02)