Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data

被引:108
作者
Bendahmane, M. [1 ]
Wittbold, P. [2 ]
Zimmermann, A. [2 ]
机构
[1] Univ Victor Segalen Bordeaux 2, Inst Math Bordeaux, Bordeaux, France
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Parabolic equation; Variable exponents; Renormalized solution; Existence; Uniqueness; ENTROPY SOLUTIONS; SOBOLEV SPACES; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.jde.2010.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the well-posedness (existence and uniqueness) of a re-normalized solution to nonlinear parabolic equations with variable exponents and L-1-data. The functional setting involves Lebesgue-Sobolev spaces with variable exponents. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1483 / 1515
页数:33
相关论文
共 34 条
[31]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1
[32]   ENTROPY SOLUTIONS FOR THE p(x)-LAPLACE EQUATION [J].
Sanchon, Manel ;
Urbano, Jose Miguel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6387-6405
[33]   Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1-data [J].
Wittbold, P. ;
Zimmermann, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2990-3008
[34]  
Zhikov VV., 2004, ZAP NAUCHN SEM S PET, V310, P67