Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data

被引:108
作者
Bendahmane, M. [1 ]
Wittbold, P. [2 ]
Zimmermann, A. [2 ]
机构
[1] Univ Victor Segalen Bordeaux 2, Inst Math Bordeaux, Bordeaux, France
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Parabolic equation; Variable exponents; Renormalized solution; Existence; Uniqueness; ENTROPY SOLUTIONS; SOBOLEV SPACES; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.jde.2010.05.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the well-posedness (existence and uniqueness) of a re-normalized solution to nonlinear parabolic equations with variable exponents and L-1-data. The functional setting involves Lebesgue-Sobolev spaces with variable exponents. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1483 / 1515
页数:33
相关论文
共 34 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[3]  
[Anonymous], EVOLUTION E IN PRESS
[4]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[5]  
Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053
[6]  
B?nilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[7]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[8]   Renormalized solutions of an anisotropic reaction-diffusion-advection system with L1 data [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :733-762
[9]   Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data [J].
Bendahmane, Mostafa ;
Wittbold, Petra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :567-583
[10]  
Benilan P., 2000, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V29, P313