Regular propagators of bilinear quantum systems

被引:15
|
作者
Boussaid, Nabile [1 ]
Caponigro, Marco [2 ]
Chambrion, Thomas [3 ,4 ,5 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, UMR 6623, F-54506 Besancon, France
[2] Conservatoire Natl Arts & Metiers, EA 7340, Equipe M2N, F-75003 Paris, France
[3] Univ Lorraine, UMR 7502, IECL, F-54506 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[5] INRIA, SPHINX, F-54600 Vandoeuvre Les Nancy, France
关键词
Quantum control; Bilinear Schrodinger equation; LOCAL-CONTROLLABILITY;
D O I
10.1016/j.jfa.2019.108412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present analysis deals with the regularity of solutions of bilinear control systems of the type x' = (A + u(t)B)x where the state x belongs to some complex infinite dimensional Hilbert space, the (possibly unbounded) linear operators A and B are skew-adjoint and the control u is a real valued function. Such systems arise, for instance, in quantum control with the bilinear Schrodinger equation. For the sake of the regularity analysis, we consider a more general framework where A and B are generators of contraction semigroups. Under some hypotheses on the commutator of the operators A and B, it is possible to extend the definition of solution for controls in the set of Radon measures to obtain precise a priori energy estimates on the solutions, leading to a natural extension of the celebrated noncontrollability result of Ball, Marsden, and Slemrod in 1982. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:66
相关论文
共 50 条
  • [21] Modeling and Control of Quantum Systems: An Introduction
    Altafini, Claudio
    Ticozzi, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) : 1898 - 1917
  • [22] Controlling the probability density of quantum systems
    Xing, Yifan
    Wu, Jun
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2011, 22 (06) : 975 - 981
  • [23] Quantum control and quantum speed limits of single-well systems
    Song, Juan -Juan
    Li, Ke
    Li, Sheng-Chang
    RESULTS IN PHYSICS, 2024, 58
  • [24] Controllability of multi-partite quantum systems and selective excitation of quantum dots
    Schirmer, SG
    Pullen, ICH
    Solomon, AI
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) : S293 - S299
  • [25] Control of Quantum Systems Despite Feedback Delay
    Kashima, Kenji
    Yamamoto, Naoki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) : 876 - 881
  • [26] The Gradient Flow for Control of Closed Quantum Systems
    Long, Ruixing
    Riviello, Gregory
    Rabitz, Herschel
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (10) : 2665 - 2669
  • [27] Robust stability of uncertain linear quantum systems
    Petersen, Ian R.
    Ugrinovskii, Valery
    James, Matthew R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1979): : 5354 - 5363
  • [28] Controlling NMR spin systems for quantum computation
    Jones, Jonathan A.
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2024, 140-141 : 49 - 85
  • [29] Control Protocol of Finite Dimensional Quantum Systems
    唐剑炬
    付洪忱
    CommunicationsinTheoreticalPhysics, 2013, 60 (12) : 731 - 737
  • [30] PROBABILITY DENSITY FUNCTION CONTROL OF QUANTUM SYSTEMS
    Xing, Yi-Fan
    Wu, Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (17): : 2289 - 2297