Regular propagators of bilinear quantum systems

被引:15
|
作者
Boussaid, Nabile [1 ]
Caponigro, Marco [2 ]
Chambrion, Thomas [3 ,4 ,5 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, UMR 6623, F-54506 Besancon, France
[2] Conservatoire Natl Arts & Metiers, EA 7340, Equipe M2N, F-75003 Paris, France
[3] Univ Lorraine, UMR 7502, IECL, F-54506 Vandoeuvre Les Nancy, France
[4] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[5] INRIA, SPHINX, F-54600 Vandoeuvre Les Nancy, France
关键词
Quantum control; Bilinear Schrodinger equation; LOCAL-CONTROLLABILITY;
D O I
10.1016/j.jfa.2019.108412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present analysis deals with the regularity of solutions of bilinear control systems of the type x' = (A + u(t)B)x where the state x belongs to some complex infinite dimensional Hilbert space, the (possibly unbounded) linear operators A and B are skew-adjoint and the control u is a real valued function. Such systems arise, for instance, in quantum control with the bilinear Schrodinger equation. For the sake of the regularity analysis, we consider a more general framework where A and B are generators of contraction semigroups. Under some hypotheses on the commutator of the operators A and B, it is possible to extend the definition of solution for controls in the set of Radon measures to obtain precise a priori energy estimates on the solutions, leading to a natural extension of the celebrated noncontrollability result of Ball, Marsden, and Slemrod in 1982. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:66
相关论文
共 50 条
  • [11] Control problems in quantum systems
    Wu ReBing
    Zhang Jing
    Li ChunWen
    Long GuiLu
    Tarn TzyhJong
    CHINESE SCIENCE BULLETIN, 2012, 57 (18): : 2194 - 2199
  • [12] Fault tolerant quantum filtering and fault detection for quantum systems
    Gao, Qing
    Dong, Daoyi
    Petersen, Ian R.
    AUTOMATICA, 2016, 71 : 125 - 134
  • [13] Ensemble controllability and discrimination of perturbed bilinear control systems on connected, simple, compact Lie groups
    Belhadj, Mohamed
    Salomon, Julien
    Turinici, Gabriel
    EUROPEAN JOURNAL OF CONTROL, 2015, 22 : 23 - 29
  • [14] Simultaneous local controllability of the spectrum and the Lyapunov irregularity coefficient of regular systems
    Popova, SN
    DIFFERENTIAL EQUATIONS, 2004, 40 (03) : 461 - 465
  • [15] Simultaneous Local Controllability of the Spectrum and the Lyapunov Irregularity Coefficient of Regular Systems
    S. N. Popova
    Differential Equations, 2004, 40 : 461 - 465
  • [16] Monotonic parareal control for quantum systems
    Maday, Yvon
    Salomon, Julien
    Turinici, Gabriel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) : 2468 - 2482
  • [17] Control and Robustness for Quantum Linear Systems
    Petersen, Ian R.
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 17 - 25
  • [18] Quantum systems under frequency modulation
    Silveri, M. P.
    Tuorila, J. A.
    Thuneberg, E. V.
    Paraoanu, G. S.
    REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (05)
  • [19] Controllability of quantum systems with switching control
    Dong, Daoyi
    Petersen, Ian R.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (01) : 37 - 46
  • [20] Controlling the probability density of quantum systems
    Yifan Xing and Jun Wu Institute of Cyber-Systems and Control
    JournalofSystemsEngineeringandElectronics, 2011, 22 (06) : 975 - 981