Gait Recognition Method Based on Hybrid Kernel and Optimized Parameter SVM

被引:0
作者
Ni, Jian [1 ]
Liang, Libo [1 ]
机构
[1] Hebei Univ Engn, Coll informat & Elect Engn, Handan 056038, Peoples R China
来源
2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4 | 2009年
关键词
gait recognition; SVM; hybrid kernel; objective function; PSO algorithm;
D O I
10.1109/ICCSIT.2009.5234612
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The gait recognition algorithm adopt support vector machine based on hybrid kernel function and Parameter Optimization. Partial kernel function and overall kernel function are fitted to compose super-kernel function, so that the SVM obtain better generalization ability and generalization ability. In terms of parameter selection, the text uses the objective function and combine OPS algorithm to select the best kernel parameter. This method makes use of the distance of training samples of different classes to find the optimal (or effective) nuclear parameters instead of the standard SVM training samples. It avoids strong empirical and large amount of calculation of the traditional SVM on model selection. Then the gaits are classified by the support vector machine models. This algorithm is applied to a data-set including thirty individuals. Experimental results demonstrate that the algorithm performs at an encouraging recognition rate and at a relatively lower computational cost.
引用
收藏
页码:60 / 63
页数:4
相关论文
共 8 条
[1]  
CHI M, 2007, COMPUTER TECHNOLOGY, V17, P20
[2]   Automatic gait recognition by symmetry analysis [J].
Hayfron-Acquah, JB ;
Nixon, MS ;
Carter, JN .
PATTERN RECOGNITION LETTERS, 2003, 24 (13) :2175-2183
[3]  
Lee L., 2002, P IEEE INT C AUT FAC
[4]  
LUCIANO S, 2006, J BIOMECH, V39, P2898
[5]   The HumanID gait challenge problem: Data sets, performance, and analysis [J].
Sarkar, S ;
Phillips, PJ ;
Liu, ZY ;
Vega, IR ;
Grother, P ;
Bowyer, KW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (02) :162-177
[6]   Edge and corner detection by photometric quasi-invariants [J].
van de Weijer, J ;
Gevers, T ;
Geusebroek, JM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (04) :625-630
[7]   Fusion of static and dynamic body biometrics for gait recognition [J].
Wang, L ;
Ning, HZ ;
Tan, TN ;
Hu, WM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (02) :149-158
[8]   Learning the kernel parameters in kernel minimum distance classifier [J].
Zhang, DQ ;
Chen, SC ;
Zhou, ZH .
PATTERN RECOGNITION, 2006, 39 (01) :133-135