Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens

被引:123
|
作者
Chaloulakou, A
Saisana, M
Spyrellis, N
机构
[1] Commiss European Communities, Joint Res Ctr, IPSC, TERM, I-21020 Ispra, VA, Italy
[2] Natl Tech Univ Athens, Dept Chem Engn, Athens 15780, Greece
关键词
air quality forecasting; neural networks; ozone; model performance indices;
D O I
10.1016/S0048-9697(03)00335-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A comparison study has been performed with neural networks (NNs) and multiple linear regression models to forecast the next day's maximum hourly ozone concentration in the Athens basin at four representative monitoring stations that show very different behavior. All models use 11 predictors (eight meteorological and three persistence variables) and are developed and validated between April and October from 1992 to 1999. Performance results based on a wide set of forecast quality measures indicate that the NNs provide better estimates of ozone concentrations at the monitoring sites, whilst the more often used linear models are less efficient at accurately forecasting high ozone concentrations. The violation of the European information threshold of 180 mug/m(3) is successfully predicted by the NN in 72% of the cases on average. Results at all stations are consistent with similar ozone forecast studies using NNs in other European cities. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
empty
未找到相关数据