Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase

被引:21
作者
Hong, Soo-Jeong [1 ,2 ]
Kim, Hyo Jin [3 ]
Kim, Jin-Woo [1 ,2 ]
Lee, Dae-Hee [4 ]
Seo, Jin-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[2] Seoul Natl Univ, Ctr Food & Bioconvergence, Seoul 151921, South Korea
[3] Korea Food Res Inst, Fermentat & Funct Res Grp, Songnam 463746, South Korea
[4] KRIBB, Biochem & Synthet Biol Res Ctr, Taejon 305806, South Korea
基金
新加坡国家研究基金会;
关键词
Ethanol; Inulin; Inulinase; Saccharomyces cerevisiae; Consolidated bioprocessing; INDIVIDUAL HEXOSE TRANSPORTERS; JERUSALEM-ARTICHOKE; BIOETHANOL PRODUCTION; FERMENTATION; EXPRESSION; OPTIMIZATION; GENE; GLYCOSYLATION; STABILITY; XYLOSE;
D O I
10.1007/s00449-014-1265-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Inulin is a polyfructan that is abundant in plants such as Jerusalem artichoke, chicory and dahlia. Inulinase can easily hydrolyze inulin to fructose, which is consumed by microorganisms. Generally, Saccharomyces cerevisiae, an industrial workhorse strain for bioethanol production, is known for not having inulinase activity. The inulinase gene from Kluyveromyces marxianus (KmINU), with the ability of converting inulin to fructose, was introduced into S. cerevisiae D452-2. The inulinase gene was fused to three different types of promoter (GPD, PGK1, truncated HXT7) and secretory signal sequence (KmINU, MF alpha 1, SUC2) to generate nine expression cassettes. The inulin fermentation performance of the nine transformants containing different promoter and signal sequence combinations for inulinase production were compared to select an optimized expression system for efficient inulin fermentation. Among the nine inulinase-producing transformants, the S. cerevisiae carrying the PGK1 promoter and MF alpha 1 signal sequence (S. cerevisiae D452-2/p426PM) showed not only the highest specific KmINU activity, but also the best inulin fermentation capability. Finally, a batch fermentation of the selected S. cerevisiae D452-2/p426PM in a bioreactor with 188.2 g/L inulin was performed to produce 80.2 g/L ethanol with 0.43 g ethanol/g inulin of ethanol yield and 1.22 g/L h of ethanol productivity.
引用
收藏
页码:263 / 272
页数:10
相关论文
共 36 条
  • [1] PRODUCTION OF INULINASE BY A NEW MOLD OF PENICILLIUM-RUGULOSUM
    BARTHOMEUF, C
    REGERAT, F
    POURRAT, H
    [J]. JOURNAL OF FERMENTATION AND BIOENGINEERING, 1991, 72 (06): : 491 - 494
  • [2] Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Kim, Soo Rin
    Choi, Jin-Ho
    Yang, Xiaomin
    Seo, Jin-Ho
    Glass, N. Louise
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 504 - 509
  • [3] Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae
    Hauf, J
    Zimmermann, FK
    Müller, S
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2000, 26 (9-10) : 688 - 698
  • [4] HOLLAND JP, 1980, J BIOL CHEM, V255, P2596
  • [5] Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing
    Hu, Nan
    Yuan, Bo
    Sun, Juan
    Wang, Shi-An
    Li, Fu-Li
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (05) : 1359 - 1368
  • [6] Optimization of inulinase production by Kluyveromyces marxianus using factorial design
    Kalil, SJ
    Suzan, R
    Maugeri, F
    Rodrigues, MI
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2001, 94 (03) : 257 - 264
  • [7] ANALYSIS OF THE PRIMARY STRUCTURE AND PROMOTER FUNCTION OF A PYRUVATE DECARBOXYLASE GENE (PDC1) FROM SACCHAROMYCES-CEREVISIAE
    KELLERMANN, E
    SEEBOTH, PG
    HOLLENBERG, CP
    [J]. NUCLEIC ACIDS RESEARCH, 1986, 14 (22) : 8963 - 8977
  • [8] Investigation of protein expression profiles of erythritol-producing Candida magnoliae in response to glucose perturbation
    Kim, Hyo Jin
    Lee, Hyeong-Rho
    Kim, Chang Sup
    Jin, Yong-Su
    Seo, Jin-Ho
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2013, 53 (03) : 174 - 180
  • [9] Production of 2,3-butanediol by engineered Saccharomyces cerevisiae
    Kim, Soo-Jung
    Seo, Seung-Oh
    Jin, Yong-Su
    Seo, Jin-Ho
    [J]. BIORESOURCE TECHNOLOGY, 2013, 146 : 274 - 281
  • [10] Molecular cloning and characterization of two novel fructose-specific transporters from the osmotolerant and fructophilic yeast Candida magnoliae JH110
    Lee, Dae-Hee
    Kim, Soo-Jung
    Seo, Jin-Ho
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (08) : 3569 - 3578