Nonlinear parabolic capacity and renormalized solutions for PDEs with diffuse measure data and variable exponent

被引:0
作者
Abdellaoui, Mohammed [1 ]
Azroul, Elhoussine [1 ]
Ouaro, Stanislas [2 ]
Traore, Urbain [2 ]
机构
[1] Univ Fez, LAMA, Fac Sci Dhar El Mahraz, Dept Math, BP 1796, Atlas Fez, Morocco
[2] Univ Ouaga 1 Pr JKZ, UFR, LAME, Sci Exactes & Appl, 03 BP 7021, Ouagadougou 03, Burkina Faso
来源
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES | 2019年 / 46卷 / 02期
关键词
Generalized Lebesgue-Sobolev spaces; nonlinear parabolic equations; p(.)-parabolic capacity; renormalized solution; measure data; Electrorheological fluids; ELLIPTIC-EQUATIONS; REMOVABLE SINGULARITIES; ENTROPY SOLUTIONS; SOBOLEV SPACES; EXISTENCE; UNIQUENESS; BOUNDARY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the theory of capacity to generalized Sobolev spaces for the study of nonlinear parabolic equations. We introduce the definition and some properties of renormalized solutions and we show that diffuse measure can be decomposed in space and time. As consequence, we show the existence and uniqueness of renormalized solutions. The main technical tools used include estimates and compactness convergence.
引用
收藏
页码:269 / 297
页数:29
相关论文
共 48 条
[1]  
Aharouch L., 2008, AUSTR J MATH ANAL AP, V5, P1
[2]   Existence and uniqueness for a degenerate parabolic equation with L1-data [J].
Andreu, F ;
Mazón, JM ;
De León, SS ;
Toledo, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (01) :285-306
[3]  
[Anonymous], 2001, ANN SCUOLA NORM-SCI
[4]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[5]  
Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053
[6]  
ARONSON DG, 1964, ARCH RATION MECH AN, V17, P79
[7]   Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data [J].
Bendahmane, Mostafa ;
Wittbold, Petra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) :567-583
[8]  
Benilan P., 1995, Ann. Sc. Norm. Super. Pisa Cl. Sci., V22, P241
[9]   Stability properties for quasilinear parabolic equations with measure data [J].
Bidaut-Veron, Marie-Francoise ;
Nguyen Quoc Hung .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (09) :2103-2135
[10]   TRUNCATIONS AND MONOTONICITY METHODS FOR PARABOLIC EQUATIONS [J].
BLANCHARD, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (10) :725-743