Chaos due to symmetry-breaking in deformed Poisson ensemble

被引:8
作者
Das, Adway Kumar [1 ]
Ghosh, Anandamohan [1 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Mohanpur 741246, India
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2022年 / 2022卷 / 06期
关键词
breaking integrability; matrix models; RANDOM MATRICES; QUANTUM CHAOS; PHYSICS;
D O I
10.1088/1742-5468/ac70dd
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The competition between strength and correlation of coupling terms in a Hamiltonian defines numerous phenomenological models exhibiting spectral properties interpolating between those of Poisson (integrable) and Wigner-Dyson (chaotic) ensembles. It is important to understand how the off-diagonal terms of a Hamiltonian evolve as one or more symmetries of an integrable system are explicitly broken. We introduce a deformed Poisson ensemble to demonstrate an exact mapping of the coupling terms to the underlying symmetries of a Hamiltonian. From the maximum entropy principle we predict a chaotic limit which is numerically verified from the spectral properties and the survival probability calculations.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[2]  
Babelon O., 2003, Introduction to classical integrable systems, DOI [DOI 10.1017/CBO9780511535024, 10.1017/CBO9780511535024]
[3]   SPECTRAL STATISTICS IN THE QUANTIZED CARDIOID BILLIARD [J].
BACKER, A ;
STEINER, F .
PHYSICAL REVIEW E, 1995, 52 (03) :2463-2472
[4]   RANDOM MATRICES AND INFORMATION THEORY [J].
BALIAN, R .
NUOVO CIMENTO B, 1968, 57 (01) :183-&
[5]   Random-matrix theory of Majorana fermions and topological superconductors [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :1037-1066
[6]   Spacing distributions for real symmetric 2 x 2 generalized Gaussian ensembles [J].
Berry, M. V. ;
Shukla, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
[7]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[8]   Spectral statistics of random Toeplitz matrices [J].
Bogomolny, Eugene .
PHYSICAL REVIEW E, 2020, 102 (04)
[9]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[10]  
Bransden B H., 2000, Quantum Mechanics, V2nd edn