Statistical Riemann problems and a composition law for errors in numerical solutions of shock physics problems

被引:8
作者
Glimm, J [1 ]
Grove, JW
Kang, YH
Lee, T
Li, XL
Sharp, DH
Yu, Y
Ye, K
Zhao, M
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Ctr Data Intens Comp, Upton, NY USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
uncertainty quantification; error model; composition law; Riemann problem;
D O I
10.1137/S1064827503427534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We seek error models for shock physics simulations that are robust and understandable. The purpose of this paper is to formulate and validate a composition law to estimate errors in the solutions of composite problems in terms of the errors from simpler ones. We illustrate this idea in a simple context. This paper employs several simplifying assumptions (restriction to one spatial dimension, use of a simplified (gamma law) equation of state, and consideration of a single numerical method). In separate papers we will address the effect of these assumptions.
引用
收藏
页码:666 / 697
页数:32
相关论文
共 21 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[3]   A Hybrid Markov Chain Monte Carlo Method for Generating Permeability Fields Conditioned to Multiwell Pressure Data and Prior Information [J].
Bonet-Cunha, Luciano ;
Oliver, D. S. ;
Redner, R. A. ;
Reynolds, A. C. .
SPE JOURNAL, 1998, 3 (03) :261-271
[4]  
Chorin A.J., 1979, MATH INTRO FLUID MEC
[5]  
COCKBURN B, 1995, COMPUT APPL MATH, V14, P37
[6]   Bayesian forecasting for complex systems using computer simulators [J].
Craig, PS ;
Goldstein, M ;
Rougier, JC ;
Seheult, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :717-729
[7]   Uncertainty quantification for multiscale simulations [J].
DeVolder, B ;
Glimm, J ;
Grove, JW ;
Kang, Y ;
Lee, Y ;
Pao, K ;
Sharp, DH ;
Ye, K .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (01) :29-41
[8]   AN S-MATRIX THEORY FOR CLASSICAL NONLINEAR PHYSICS [J].
GLIMM, J ;
SHARP, DH .
FOUNDATIONS OF PHYSICS, 1986, 16 (02) :125-141
[9]   Stochastic methods for the prediction of complex multiscale phenomena [J].
Glimm, J ;
Sharp, D .
QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (04) :741-765
[10]   Prediction and the quantification of uncertainty [J].
Glimm, J ;
Sharp, DH .
PHYSICA D, 1999, 133 (1-4) :152-170