HIGHER ORDER DYNAMIC INEQUALITIES ON TIME SCALES

被引:3
作者
Saker, S. H. [1 ]
Agarwal, R. P. [2 ]
O'Regan, Donal [3 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 02期
关键词
Dynamic inequalities; higher order derivatives; time scales;
D O I
10.7153/mia-17-35
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will prove some new dynamic inequalities of higher orders on time scales. The results contain some continuous and discrete inequalities as special cases. We will prove the results by making use of Holder's inequality and Taylor monomials on time scales.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 25 条
  • [1] Agarwal R. P., 1999, Results Math, V35, P3, DOI DOI 10.1007/BF03322019
  • [2] Agarwal R. P., 1995, Opial inequalities with applications in differential and difference equations
  • [3] SOME DYNAMIC WIRTINGER-TYPE INEQUALITIES AND THEIR APPLICATIONS
    Agarwal, Ravi P.
    Bohner, Martin
    O'Regan, Donal
    Saker, Samir H.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 1 - 18
  • [4] Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [5] Bohner M., 2001, Ann. Polon. Math., V77, P11
  • [6] Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
  • [7] Higgins RJ, 2004, PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS, P299
  • [8] Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
  • [9] KAC V., 2001, QUANTUM CALCULUS
  • [10] A Generalization of Opial's Inequality and Applications to Second-Order Dynamic Equations
    Karpuz, Basak
    Kaymakcalan, Billur
    Ocalan, Ozkan
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2010, 18 (1-2) : 11 - 18