Special Values of Green Functions at Big CM Points

被引:30
作者
Bruinier, Jan Hendrik [2 ]
Kudla, Stephen S. [1 ]
Yang, Tonghai [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
AUTOMORPHIC-FORMS; EISENSTEIN SERIES; DERIVATIVES; CYCLES;
D O I
10.1093/imrn/rnr095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a formula for the values of automorphic Green functions on the special rational 0-cycles (big complex multiplication (CM) points) attached to certain maximal tori in the Shimura varieties associated to rational quadratic spaces of signature (2d,2). Our approach depends on the fact that the Green functions in question are constructed as regularized theta lifts of harmonic weak Maass forms, and it involves the Siegel-Weil formula and the central derivatives of incoherent Eisenstein series for totally real fields. In the case of a weakly holomorphic form, the formula is an explicit combination of quantities obtained from the Fourier coefficients of the central derivative of the incoherent Eisenstein series. In the case of a general harmonic weak Maass form, there is an additional term given by the central derivative of a Rankin-Selberg-type convolution.
引用
收藏
页码:1917 / 1967
页数:51
相关论文
共 34 条
[1]  
[Anonymous], 1983, Fundamental Principles of Mathematical Sciences
[2]  
[Anonymous], 1992, Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1017/CBO9780511623950
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   Faltings heights of CM cycles and derivatives of L-functions [J].
Bruinier, Jan Hendrik ;
Yang, Tonghai .
INVENTIONES MATHEMATICAE, 2009, 177 (03) :631-681
[5]   CM-values of Hilbert modular functions [J].
Bruinier, JH ;
Yang, TH .
INVENTIONES MATHEMATICAE, 2006, 163 (02) :229-288
[6]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[7]   On Borcherds products associated with lattices of prime discriminant [J].
Bruinier, JH ;
Bundschuh, M .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :49-61
[8]  
Bruinier JH, 2002, SPRINGER LECT NOTES, V1780
[9]   Cohomological arithmetic chow rings [J].
Burgos Gil, J. I. ;
Kramer, J. ;
Kuehn, U. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (01) :1-172
[10]  
DORMAN DR, 1988, J REINE ANGEW MATH, V383, P207