IRREDUCIBLE FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS

被引:50
作者
Neher, Erhard [1 ]
Savage, Alistair [1 ]
Senesi, Prasad [2 ]
机构
[1] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
[2] Catholic Univ Amer, Dept Math, Washington, DC 20016 USA
基金
加拿大自然科学与工程研究理事会;
关键词
TETRAHEDRON ALGEBRA; ONSAGER ALGEBRA; WEYL MODULES; LIE-ALGEBRAS; LOOP; REALIZATION;
D O I
10.1090/S0002-9947-2011-05420-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose a finite group acts on a scheme X and a finite-dimensional Lie algebra g. The corresponding equivariant map algebra is the Lie algebra m of equivariant regular maps from X to g. We classify the irreducible finite-dimensional representations of these algebras. In particular, we show that all such representations are tensor products of evaluation representations and one-dimensional representations, and we establish conditions ensuring that they are all evaluation representations. For example, this is always the case if m is perfect. Our results can be applied to multiloop algebras, current algebras, the Onsager algebra, and the tetrahedron algebra. Doing so, we easily recover the known classifications of irreducible finite-dimensional representations of these algebras. Moreover, we obtain previously unknown classifications of irreducible finite-dimensional representations of other types of equivariant map algebras, such as the generalized Onsager algebra.
引用
收藏
页码:2619 / 2646
页数:28
相关论文
共 36 条
[21]   The tetrahedron algebra and its finite-dimensional irreducible modules [J].
Hartwig, Brian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :219-235
[22]   The Tetrahedron algebra, the Onsager algebra, and the sl2 loop algebra [J].
Hartwig, Brian ;
Terwilliger, Paul .
JOURNAL OF ALGEBRA, 2007, 308 (02) :840-863
[23]  
Jacobson N., 1989, BASIC ALGEBRA
[24]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[25]   REPRESENTATIONS OF MULTILOOP ALGEBRAS [J].
Lau, Michael .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 245 (01) :167-184
[26]   On certain categories of modules for affine Lie algebras [J].
Li, HS .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (03) :635-664
[27]  
Lusztig G., 1993, Introduction to quantum groups, V110
[28]  
Neher Erhard, 2004, C. R. Math. Acad. Sci. Soc. R. Can., V26, P90
[29]   ON REPRESENTATIONS OF LOOP ALGEBRAS [J].
RAO, SE .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) :2131-2153
[30]  
Rao SE, 2001, J ALGEBRA, V246, P215