IRREDUCIBLE FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS

被引:50
作者
Neher, Erhard [1 ]
Savage, Alistair [1 ]
Senesi, Prasad [2 ]
机构
[1] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
[2] Catholic Univ Amer, Dept Math, Washington, DC 20016 USA
基金
加拿大自然科学与工程研究理事会;
关键词
TETRAHEDRON ALGEBRA; ONSAGER ALGEBRA; WEYL MODULES; LIE-ALGEBRAS; LOOP; REALIZATION;
D O I
10.1090/S0002-9947-2011-05420-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose a finite group acts on a scheme X and a finite-dimensional Lie algebra g. The corresponding equivariant map algebra is the Lie algebra m of equivariant regular maps from X to g. We classify the irreducible finite-dimensional representations of these algebras. In particular, we show that all such representations are tensor products of evaluation representations and one-dimensional representations, and we establish conditions ensuring that they are all evaluation representations. For example, this is always the case if m is perfect. Our results can be applied to multiloop algebras, current algebras, the Onsager algebra, and the tetrahedron algebra. Doing so, we easily recover the known classifications of irreducible finite-dimensional representations of these algebras. Moreover, we obtain previously unknown classifications of irreducible finite-dimensional representations of other types of equivariant map algebras, such as the generalized Onsager algebra.
引用
收藏
页码:2619 / 2646
页数:28
相关论文
共 36 条
[1]   Realization of graded-simple algebras as loop algebras [J].
Allison, Bruce ;
Berman, Stephen ;
Faulkner, John ;
Pianzola, Arturo .
FORUM MATHEMATICUM, 2008, 20 (03) :395-432
[2]   Iterated loop algebras [J].
Allison, Bruce ;
Berman, Stephen ;
Pianzola, Arturo .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) :1-41
[3]   MULTILOOP REALIZATION OF EXTENDED AFFINE LIE ALGEBRAS AND LIE TORI [J].
Allison, Bruce ;
Berman, Stephen ;
Faulkner, John ;
Pianzola, Arturo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) :4807-4842
[4]  
[Anonymous], 1978, GRADUATE STUDIES MAT
[5]   Representations of twisted multi-loop Lie algebras [J].
Batra, P .
JOURNAL OF ALGEBRA, 2004, 272 (01) :404-416
[6]  
Bourbaki N., 1970, ELEMENTS MATH ALGEBR
[7]  
BOURBAKI N, 1958, ACTUAL SCI IND, V1261, pCH8
[8]  
Bourbaki N, 1985, ELEMENTS MATH
[9]  
BOURBAKI N, 1975, ACT SCI IND, V1364, pCH7
[10]   NEW UNITARY REPRESENTATIONS OF LOOP-GROUPS [J].
CHARI, V ;
PRESSLEY, A .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :87-104