Given (M, g) a smooth compact Riemannian manifold without boundary of dimension n >= 3, we consider the first conformal eigenvalue which is by definition the supremum of the first eigenvalue of the Laplacian among all metrics conformal to g of 2 volume 1. We prove that it is always greater than n omega(n/2)(n), the value it takes in the conformal class of the round sphere, except if (M, g) is conformally diffeomorphic to the standard sphere.
机构:
Univ Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, ItalyUniv Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
Crasta, Graziano
Fragala, Ilaria
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyUniv Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
Fragala, Ilaria
Kawohl, Bernd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cologne, Math Inst, D-50923 Cologne, GermanyUniv Roma I, Dipartimento Matemat G Castelnuovo, Piazzale Aldo Moro 2, I-00185 Rome, Italy
机构:
Univ Sofia, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, BulgariaUniv Sofia, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
Ivanov, Stefan
Vassilev, Dimiter
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USAUniv Sofia, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria