On a rigidity result for the first conformal eigenvalue of the Laplacian

被引:3
|
作者
Petrides, Romain [1 ]
机构
[1] Univ Lyon 1, CNRS UMR 5208, Inst Camille Jordan, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
Bounds; conformal; eigenvalue; Laplacian; conformal volume; Riemannian manifold; METRICS;
D O I
10.4171/JST/95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given (M, g) a smooth compact Riemannian manifold without boundary of dimension n >= 3, we consider the first conformal eigenvalue which is by definition the supremum of the first eigenvalue of the Laplacian among all metrics conformal to g of 2 volume 1. We prove that it is always greater than n omega(n/2)(n), the value it takes in the conformal class of the round sphere, except if (M, g) is conformally diffeomorphic to the standard sphere.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条