Beta-Binomial stick-breaking non-parametric prior

被引:4
|
作者
Gil-Leyva, Maria F. [1 ]
Mena, Ramses H. [1 ]
Nicoleris, Theodoros [2 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Cdmx, Mexico
[2] Natl & Kapodistrian Univ Athens, Dept Econ, Athens, Greece
来源
ELECTRONIC JOURNAL OF STATISTICS | 2020年 / 14卷 / 01期
关键词
Beta-Binomial Markov chain; density estimation; Dirichlet process prior; geometric process prior; stick-breaking prior; REPRESENTATION; DISTRIBUTIONS; MODEL;
D O I
10.1214/20-EJS1694
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of nonparametric prior distributions, termed Beta-Binomial stick-breaking process, is proposed. By allowing the underlying length random variables to be dependent through a Beta marginals Markov chain, an appealing discrete random probability measure arises. The chain's dependence parameter controls the ordering of the stick-breaking weights, and thus tunes the model's label-switching ability. Also, by tuning this parameter, the resulting class contains the Dirichlet process and the Geometric process priors as particular cases, which is of interest for MCMC implementations. Some properties of the model are discussed and a density estimation algorithm is proposed and tested with simulated datasets.
引用
收藏
页码:1479 / 1507
页数:29
相关论文
共 5 条
  • [1] Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics (with Discussion)
    Giordano, Ryan
    Liu, Runjing
    Jordan, Michael I.
    Broderick, Tamara
    BAYESIAN ANALYSIS, 2023, 18 (01): : 287 - 366
  • [2] Stochastic prior for non-parametric star-formation histories
    Wan, Jenny T.
    Tacchella, Sandro
    Johnson, Benjamin D.
    Iyer, Kartheik G.
    Speagle, Joshua S.
    Maiolino, Roberto
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 532 (04) : 4002 - 4025
  • [3] Minimally informative prior distributions for non-parametric Bayesian analysis
    Bush, Christopher A.
    Lee, Juhee
    MacEachern, Steven N.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 253 - 268
  • [4] The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes.
    Arfe, Andrea
    Peluso, Stefano
    Muliere, Pietro
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (01) : 1 - 15
  • [5] Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
    Tong, Xin
    Ke, Zijun
    FRONTIERS IN PSYCHOLOGY, 2021, 12