Mitotic Spindle Form and Function

被引:101
作者
Winey, Mark [2 ]
Bloom, Kerry [1 ]
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[2] Univ Colorado, Boulder, CO 80309 USA
基金
美国国家卫生研究院;
关键词
POLE BODY DUPLICATION; YEAST SACCHAROMYCES-CEREVISIAE; GAMMA-TUBULIN COMPLEX; KINETOCHORE-MICROTUBULE ATTACHMENT; KINESIN-RELATED PROTEINS; END-TRACKING PROTEINS; BUDDING YEAST; CELL-CYCLE; PLUS-END; ANAPHASE SPINDLE;
D O I
10.1534/genetics.111.128710
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
引用
收藏
页码:1197 / 1224
页数:28
相关论文
共 236 条
[31]   Monitoring spindle orientation: Spindle position checkpoint in charge [J].
Caydasi, Ayse K. ;
Ibrahim, Bashar ;
Pereira, Gislene .
CELL DIVISION, 2010, 5
[32]   Elm1 kinase activates the spindle position checkpoint kinase Kin4 [J].
Caydasi, Ayse Koca ;
Kurtulmus, Bahtiyar ;
Orrico, Maria I. L. ;
Hofmann, Astrid ;
Ibrahim, Bashar ;
Pereira, Gislene .
JOURNAL OF CELL BIOLOGY, 2010, 190 (06) :975-989
[33]   Actin-mediated Delivery of Astral Microtubules Instructs Kar9p Asymmetric Loading to the Bud-Ward Spindle Pole [J].
Cepeda-Garcia, Cristina ;
Delgehyr, Nathalie ;
Ortiz, M. Angeles Juanes ;
ten Hoopen, Rogier ;
Zhiteneva, Alisa ;
Segal, Marisa .
MOLECULAR BIOLOGY OF THE CELL, 2010, 21 (15) :2685-2695
[34]   B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast [J].
Chee, Mark K. ;
Haase, Steven B. .
PLOS GENETICS, 2010, 6 (05) :35
[35]   Molecular architecture of the kinetochore-microtubule interface [J].
Cheeseman, Iain M. ;
Desai, Arshad .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (01) :33-46
[36]   The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation [J].
Cheeseman, IM ;
MacLeod, I ;
Yates, JR ;
Oegema, K ;
Desai, A .
CURRENT BIOLOGY, 2005, 15 (08) :771-777
[37]   The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly [J].
Chen, XYP ;
Yin, HW ;
Huffaker, TC .
JOURNAL OF CELL BIOLOGY, 1998, 141 (05) :1169-1179
[38]   Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies [J].
Chial, HJ ;
Rout, MP ;
Giddings, TH ;
Winey, M .
JOURNAL OF CELL BIOLOGY, 1998, 143 (07) :1789-1800
[39]   Novel roles for Saccharomyces cerevisiae mitotic spindle motors [J].
Cottingham, FR ;
Gheber, L ;
Miller, DL ;
Hoyt, MA .
JOURNAL OF CELL BIOLOGY, 1999, 147 (02) :335-349
[40]   Identification of cis-acting sites for condensin loading onto budding yeast chromosomes [J].
D'Ambrosio, Claudio ;
Schmidt, Christine Katrin ;
Katou, Yuki ;
Kelly, Gavin ;
Itoh, Takehiko ;
Shirahige, Katsuhiko ;
Uhlmann, Frank .
GENES & DEVELOPMENT, 2008, 22 (16) :2215-2227