Silver nanocube dimer nanojunctions as plasmon-enhanced Raman sensors

被引:5
作者
Peng, Shih-Lun [1 ]
Chen, Gang-Yi [1 ]
Hsu, Su-Wen [1 ]
机构
[1] Nat Cheng Kung Univ, Dept Chem Engn, 1 Univ Rd, Tainan 70101, Taiwan
关键词
NANOPARTICLE PAIRS; RECENT PROGRESS; NANOSTRUCTURES; SCATTERING; RULER; SIZE;
D O I
10.1039/d2tc03329a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we demonstrated that the enhancement factor of the Raman signal in dimer nanojunctions under the plasmon-induced electromagnetic field can be tuned by the following parameters: (1) the conformations of the dimer nanojunction (vertical dimer or horizontal dimer); (2) the electrical conductivity of the ligands (thiol terminated poly-p-triphenylamine, HS-poly-p-TPA or thiol terminated poly(3,6-N-vinylcarbazole), HS-PVK) and/or matrices (poly-p-triphenylamine, PTPA or poly(3,6-N-vinylcarbazole, PVK) used to fabricate the dimer nanojunctions; (3) the irradiation intensity used to trigger the plasmonic-induced electromagnetic field around the dimer nanojunction. For dimer nanojunctions composed of high-conductivity ligand (HS-PVK)-coated AgNCs and high-conductivity matrix (PVK), the Raman signal enhancement factor of dimer nanojunctions under external stimulus can reach similar to 500%. The significant increases in the enhancement factor of Raman signals under the plasmon-induced electromagnetic field can be attributed to the reducing the spacing between nanocrystals in the dimer nanojunction, which was caused by changing the configuration of the conducting ligand and the polymer matrix around the dimer nanojunction. The highly sensitive Raman response of dimer nanojunctions to external stimulus makes these dimer nanojunctions ideal for use in "electromagnetic field" or "photonic" sensors.
引用
收藏
页码:16573 / 16582
页数:10
相关论文
共 49 条
  • [1] Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/nmat2404, 10.1038/NMAT2404]
  • [2] A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids
    Alonso-Redondo, E.
    Schmitt, M.
    Urbach, Z.
    Hui, C. M.
    Sainidou, R.
    Rembert, P.
    Matyjaszewski, K.
    Bockstaller, M. R.
    Fytas, G.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [3] Free-standing metal-organic framework (MOF) monolayers by self-assembly of polymer-grafted nanoparticles
    Barcus, Kyle
    Cohen, Seth M.
    [J]. CHEMICAL SCIENCE, 2020, 11 (32) : 8433 - 8437
  • [4] Caseri W, 2000, MACROMOL RAPID COMM, V21, P705, DOI 10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO
  • [5] 2-3
  • [6] Fabrication of Sub-10-nm Plasmonic Gaps for Ultra-Sensitive Raman Spectroscopy
    Cetin, Arif E.
    Yilmaz, Cihan
    Galarreta, Betty C.
    Yilmaz, Gizem
    Altug, Hatice
    Busnaina, Ahmed
    [J]. PLASMONICS, 2020, 15 (04) : 1165 - 1171
  • [7] Ag nanoparticles decorated ZnO: Al nanoneedles as a high-performance surface-enhanced Raman scattering substrate
    Chang, Tung-Hao
    Chang, Yu-Cheng
    Wu, Shuo-Hsiu
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
  • [8] Surface-enhanced Raman Scattering Effect of Silver Dendritic Nanostructures
    Chen Shao-Yun
    Wang Yuan
    Liu Hui
    Hu Cheng-Long
    Liu Xue-Qing
    Liu Ji-Yan
    [J]. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 45 (03) : 374 - 380
  • [9] Origin of the Plasmonic Chirality of Gold Nanorod Trimers Templated by DNA Origami
    Chen, Zhong
    Choi, Chun Kit K.
    Wang, Qiangbin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (32) : 26835 - 26840
  • [10] Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties
    Choi, Chun Kit K.
    Zhuo, Xiaolu
    Chiu, Yee Ting Elaine
    Yang, Hongrong
    Wang, Jianfang
    Choi, Chung Hang Jonathan
    [J]. NANOSCALE, 2017, 9 (43) : 16968 - 16980