Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda

被引:174
作者
Avitabile, Valerio [1 ]
Baccini, Alessandro [2 ]
Friedl, Mark A. [3 ]
Schmullius, Christiane [1 ]
机构
[1] Univ Jena, Inst Geog, D-07743 Jena, Germany
[2] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[3] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
关键词
Biomass; Carbon; Landsat; Uganda; Forest; Land cover; LiDAR; GLAS; Regression tree; Random forest; REDD; TROPICAL FOREST BIOMASS; INVENTORY DATA; TM DATA; SATELLITE ESTIMATION; BRAZILIAN AMAZON; ETM+ DATA; CARBON; VOLUME; LIDAR; EMISSIONS;
D O I
10.1016/j.rse.2011.10.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aboveground woody biomass for circa-2000 is mapped at national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM + images, a National land cover dataset and field data using an object-oriented approach. A regression tree-based model (Random Forest) produces good results (cross-validated R-2 0.81, RMSE 13 T/ha) when trained with a sufficient number of field plots representative of the vegetation variability at national scale. The Random Forest model captures non-linear relationships between satellite data and biomass density, and is able to use categorical data (land cover) in the regression to improve the results. Biomass estimates were strongly correlated (r = 0.90 and r = 0.83) with independent LiDAR measurements. In this study, we demonstrate that in certain contexts Landsat data provide the capability to spatialize field biomass measurements and produce accurate and detailed estimates of biomass distribution at national scale. We also investigate limitations of this approach, which tend to provide conservative biomass estimates. Specific limitations are mainly related to saturation of the optical signal at high biomass density and cloud cover, which hinders the compilation of a radiometrically consistent multi-temporal dataset As a result, a Landsat mosaic created for Uganda with images acquired in the dry season during 1999-2003 does not contain phenological information useful for discriminating some vegetation types, such as deciduous formations. The addition of land cover data increases the model performance because it provides information on vegetation phenology. We note that Landsat data present higher spatial and thematic resolution compared to land cover and allow detailed and spatially continuous biomass estimates to be mapped. Fusion of satellite and ancillary data may improve biomass predictions but, to avoid error propagation, accurate, detailed and up-to-date land cover or other ancillary data are necessary. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 380
页数:15
相关论文
共 95 条
  • [1] [Anonymous], 2006, GLOBAL FOREST RESOUR
  • [2] [Anonymous], 2009, LANDS 7 SCI DAT US H
  • [3] Tropical forest carbon assessment: integrating satellite and airborne mapping approaches
    Asner, Gregory P.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (03):
  • [4] Scaling field data to calibrate and validate moderate spatial resolution remote sensing models
    Baccini, A.
    Friedl, M. A.
    Woodcock, C. E.
    Zhu, Z.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (08) : 945 - 954
  • [5] Forest biomass estimation over regional scales using multisource data
    Baccini, A
    Friedl, MA
    Woodcock, CE
    Warbington, R
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (10) : L105011 - 4
  • [6] A first map of tropical Africa's above-ground biomass derived from satellite imagery
    Baccini, A.
    Laporte, N.
    Goetz, S. J.
    Sun, M.
    Dong, H.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04):
  • [7] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [8] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [9] An outlook on the Sub-Saharan Africa carbon balance
    Bombelli, A.
    Henry, M.
    Castaldi, S.
    Adu-Bredu, S.
    Arneth, A.
    de Grandcourt, A.
    Grieco, E.
    Kutsch, W. L.
    Lehsten, V.
    Rasile, A.
    Reichstein, M.
    Tansey, K.
    Weber, U.
    Valentini, R.
    [J]. BIOGEOSCIENCES, 2009, 6 (10) : 2193 - 2205
  • [10] Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec
    Boudreau, Jonathan
    Nelson, Ross F.
    Margolis, Hank A.
    Beaudoin, Andre
    Guindon, Luc
    Kimes, Daniel S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) : 3876 - 3890