ON THE EFFICIENCY OF ONLINE APPROACH TO NONPARAMETRIC SMOOTHING OF BIG DATA

被引:11
|
作者
Kong, Efang [1 ]
Xia, Yingcun [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
中国国家自然科学基金;
关键词
Big data; kernel density estimation; N-W estimation; online updating estimation; varying coefficient model; KERNEL DENSITY-ESTIMATION;
D O I
10.5705/ss.202015.0365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The online updating approach (ONLINE) has been commonly used for the analysis of big data and online transient data. We consider in this paper how to improve its efficiency for various ONLINE kernel-based nonparametric estimators. Our findings include: (i) the optimal choice concerning the bandwidth and how it differs from that for the classical estimators; (ii) the optimal choice among a general class of sequential updating schemes; (iii) that the relative efficiencies of ONLINE Parzen-Rosenblatt density estimation or Nadaraya-Waston (N-W) regression estimation change with the dimension p of covariate in a nonlinear manner, and (iv) that while the classical local-linear fitting renders the estimators design-adaptive, their ONLINE counterparts still depend on the design of covariates in its leading terms of bias, they are still preferred over the ONLINE N-W estimators.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [41] Summarizing Online Movie Reviews: A Machine Learning Approach to Big Data Analytics
    Khan, Atif
    Gul, Muhammad Adnan
    Uddin, M. Irfan
    Shah, Syed Atif Ali
    Ahmad, Shafiq
    Al Firdausi, Muhammad Dzulqarnain
    Zaindin, Mazen
    SCIENTIFIC PROGRAMMING, 2020, 2020
  • [42] A Novel Online and Non-Parametric Approach for Drift Detection in Big Data
    Bhaduri, Moinak
    Zhan, Justin
    Chiu, Carter
    Zhan, Felix
    IEEE ACCESS, 2017, 5 : 15883 - 15892
  • [43] Are the dead taking over Facebook? A Big Data approach to the future of death online
    Ohman, Carl J.
    Watson, David
    BIG DATA & SOCIETY, 2019, 6 (01):
  • [44] Nonparametric Smoothing of Yield Curves
    Tanggaard C.
    Review of Quantitative Finance and Accounting, 1997, 9 (3) : 251 - 267
  • [45] NONPARAMETRIC SMOOTHING OF EXPERIMENTAL RELATIONS
    MUKHINA, LG
    SAMARIN, YP
    INDUSTRIAL LABORATORY, 1976, 42 (03): : 434 - 436
  • [46] Big data for online learning systems
    Dahdouh, Karim
    Dakkak, Ahmed
    Oughdir, Lahcen
    Messaoudi, Faycal
    EDUCATION AND INFORMATION TECHNOLOGIES, 2018, 23 (06) : 2783 - 2800
  • [47] Online Education Big Data Platform
    Zhang, Guigang
    Yang, Yi
    Zhai, Xiaoshuang
    Yao, Qi
    Wang, Jian
    2016 11TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE), 2016, : 58 - 63
  • [48] A SMOOTHING APPROACH FOR MASKING SPATIAL DATA
    Zhou, Yijie
    Dominici, Francesca
    Louis, Thomas A.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (03): : 1451 - 1475
  • [49] Online Anomaly Detection in Big Data
    Balasingam, B.
    Sankavaram, M. S.
    Choi, K.
    Ayala, D. F. M.
    Sidoti, D.
    Pattipati, K.
    Willett, P.
    Lintz, C.
    Commeau, G.
    Dorigo, F.
    Fahrny, J.
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [50] Big data for online learning systems
    Karim Dahdouh
    Ahmed Dakkak
    Lahcen Oughdir
    Fayçal Messaoudi
    Education and Information Technologies, 2018, 23 : 2783 - 2800