ON THE EFFICIENCY OF ONLINE APPROACH TO NONPARAMETRIC SMOOTHING OF BIG DATA

被引:11
|
作者
Kong, Efang [1 ]
Xia, Yingcun [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
中国国家自然科学基金;
关键词
Big data; kernel density estimation; N-W estimation; online updating estimation; varying coefficient model; KERNEL DENSITY-ESTIMATION;
D O I
10.5705/ss.202015.0365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The online updating approach (ONLINE) has been commonly used for the analysis of big data and online transient data. We consider in this paper how to improve its efficiency for various ONLINE kernel-based nonparametric estimators. Our findings include: (i) the optimal choice concerning the bandwidth and how it differs from that for the classical estimators; (ii) the optimal choice among a general class of sequential updating schemes; (iii) that the relative efficiencies of ONLINE Parzen-Rosenblatt density estimation or Nadaraya-Waston (N-W) regression estimation change with the dimension p of covariate in a nonlinear manner, and (iv) that while the classical local-linear fitting renders the estimators design-adaptive, their ONLINE counterparts still depend on the design of covariates in its leading terms of bias, they are still preferred over the ONLINE N-W estimators.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [21] Nonparametric smoothing estimates of a nonlinear mixed model with longitudinal data
    Liu, J
    Xiang, J
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 267 - 269
  • [22] A NONPARAMETRIC COST APPROACH TO SCALE EFFICIENCY
    FARE, R
    GROSSKOPF, S
    SCANDINAVIAN JOURNAL OF ECONOMICS, 1985, 87 (04): : 594 - 604
  • [23] A parallel online trajectory compression approach for supporting big data workflow
    Wei Han
    Ze Deng
    Junde Chu
    Jing Zhu
    Peng Gao
    Tejal Shah
    Computing, 2018, 100 : 3 - 20
  • [24] A parallel online trajectory compression approach for supporting big data workflow
    Han, Wei
    Deng, Ze
    Chu, Junde
    Zhu, Jing
    Gao, Peng
    Shah, Tejal
    COMPUTING, 2018, 100 (01) : 3 - 20
  • [25] Industry classification with online resume big data: A design science approach
    Xu, Xiaoying
    Qian, Hanlin
    Ge, Chunmian
    Lin, Zhijie
    INFORMATION & MANAGEMENT, 2020, 57 (05)
  • [26] Moving Big Data to The Cloud: An Online Cost-Minimizing Approach
    Zhang, Linquan
    Wu, Chuan
    Li, Zongpeng
    Guo, Chuanxiong
    Chen, Minghua
    Lau, Francis C. M.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (12) : 2710 - 2721
  • [27] Smoothing the Path to Computing; Pondering Uses for Big Data
    Hall, Mary
    Ladner, Richard
    Levitt, Diane
    Quinones, Manuel A. Perez
    Bagchi, Saurabh
    COMMUNICATIONS OF THE ACM, 2019, 62 (03) : 8 - 9
  • [28] NONPARAMETRIC APPROACH TO DYNAMIC EFFICIENCY - A NONPARAMETRIC APPLICATION OF COINTEGRATION TO PRODUCTION FRONTIERS
    SENGUPTA, JK
    APPLIED ECONOMICS, 1992, 24 (02) : 153 - 159
  • [29] Confidence intervals for nonparametric quantile regression: an emphasis on smoothing splines approach
    Lim, Yaeji
    Oh, Hee-Seok
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2017, 59 (04) : 527 - 543
  • [30] ON A LIKELIHOOD-BASED APPROACH IN NONPARAMETRIC SMOOTHING AND CROSS-VALIDATION
    CHAUDHURI, P
    DEWANJI, A
    STATISTICS & PROBABILITY LETTERS, 1995, 22 (01) : 7 - 15