Ground State Solution of Kirchhoff Problems with Hartree Type Nonlinearity

被引:1
作者
Wang, Linjie [1 ,2 ]
Liu, Haidong [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Zhejiang, Peoples R China
[3] Jiaxing Univ, Inst Math, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Ground state solution; Nehari manifold; Concentration compactness argument; NODAL SOLUTIONS; EXISTENCE; EQUATIONS; BEHAVIOR;
D O I
10.1007/s12346-022-00668-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Kirchhoff type equation -(a+b integral(R3)vertical bar del u vertical bar vertical bar(2) dx)Delta u+V(x)u=(I alpha*vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u in R-3, where a, b>0, 0<alpha<3, 2<p<3+alpha and I-alpha is the Riesz potential, we establish the existence of a positive ground state solution by using Nehari manifold technique and concentration compactness argument. The main novelty in our context is that the potential V exhibits a mixed behavior, i.e., V is periodic in some directions while tends to a positive constant in the remaining ones.
引用
收藏
页数:12
相关论文
共 25 条
  • [11] Groundstates for Kirchhoff-Type Equations with Hartree-Type Nonlinearities
    Li, Yan
    Li, Xinfu
    Ma, Shiwang
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (01)
  • [12] Existence of a positive solution to Kirchhoff type problems without compactness conditions
    Li, Yuhua
    Li, Fuyi
    Shi, Junping
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2285 - 2294
  • [13] Lieb E., 2001, ANALYSIS-UK, V2nd
  • [14] LIEB EH, 1977, STUD APPL MATH, V57, P93
  • [15] Lions JL., 1978, N HOLLAND MATH STUD, V30, P284
  • [16] Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4
  • [17] LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
  • [18] A note on Kirchhoff-type equations with Hartree-type nonlinearities
    Lu, Dengfeng
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 99 : 35 - 48
  • [19] A guide to the Choquard equation
    Moroz, Vitaly
    Van Schaftingen, Jean
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 773 - 813
  • [20] Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
    Moroz, Vitaly
    Van Schaftingen, Jean
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (02) : 153 - 184