Ground State Solution of Kirchhoff Problems with Hartree Type Nonlinearity

被引:1
作者
Wang, Linjie [1 ,2 ]
Liu, Haidong [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Zhejiang, Peoples R China
[3] Jiaxing Univ, Inst Math, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Ground state solution; Nehari manifold; Concentration compactness argument; NODAL SOLUTIONS; EXISTENCE; EQUATIONS; BEHAVIOR;
D O I
10.1007/s12346-022-00668-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Kirchhoff type equation -(a+b integral(R3)vertical bar del u vertical bar vertical bar(2) dx)Delta u+V(x)u=(I alpha*vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u in R-3, where a, b>0, 0<alpha<3, 2<p<3+alpha and I-alpha is the Riesz potential, we establish the existence of a positive ground state solution by using Nehari manifold technique and concentration compactness argument. The main novelty in our context is that the potential V exhibits a mixed behavior, i.e., V is periodic in some directions while tends to a positive constant in the remaining ones.
引用
收藏
页数:12
相关论文
共 25 条
  • [1] Singularly perturbed critical Choquard equations
    Alves, Claudianor O.
    Gao, Fashun
    Squassina, Marco
    Yang, Minbo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3943 - 3988
  • [2] Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity
    Chen, Sitong
    Zhang, Binlin
    Tang, Xianhua
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 148 - 167
  • [3] Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3
    Deng, Yinbin
    Peng, Shuangjie
    Shuai, Wei
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) : 3500 - 3527
  • [4] Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities
    Figueiredo, Giovany M.
    Ikoma, Norihisa
    Santos Junior, Joao R.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (03) : 931 - 979
  • [5] A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality
    Gao, Fashun
    Yang, Minbo
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [6] Nodal solutions for the Choquard equation
    Ghimenti, Marco
    Van Schaftingen, Jean
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 107 - 135
  • [7] Ground states for Kirchhoff equations without compact condition
    Guo, Zuji
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 2884 - 2902
  • [8] Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3
    He, Xiaoming
    Zou, Wenming
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1813 - 1834
  • [9] He Y, 2015, CALC VAR PARTIAL DIF, V54, P3067, DOI 10.1007/s00526-015-0894-2
  • [10] Kirchhoff G., 1883, MECHANIK