On quasi-periodic wave solutions and asymptotic behaviors to a (2+1)-dimensional generalized variable-coefficient Sawada-Kotera equation

被引:1
作者
Tu, Jian-Min
Tian, Shou-Fu [1 ]
Xu, Mei-Juan
Ma, Pan-Li
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2015年 / 29卷 / 19期
关键词
Bell polynomial; Hirota bilinear form; Sawada-Kotera equation; periodic wave solution; solitary wave solution; NONLINEAR EVOLUTION-EQUATIONS; DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS;
D O I
10.1142/S0217984915501018
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a (2 + 1)-dimensional generalized variable-coefficient Sawada-Kotera (gvcSK) equation is investigated, which describes many nonlinear phenomena in fluid dynamics and plasma physics. Based on the properties of binary Bell polynomials, we present a Hirota's bilinear equation to the gvcSK equation. By virtue of the Hirota's bilinear equation, we obtain the N-soliton solutions and the quasi-periodic wave solutions of the gvcSK equation, which can be reduced to the ones of several integrable equations such as Sawada-Kotera, modified Caudrey-Dodd-Gibbon-Sawada-Kotera, isospectral BKP equations and etc. Furthermore, we obtain the relationship between the soliton solutions and periodic solutions by considering the asymptotic properties of the periodic solutions.
引用
收藏
页数:22
相关论文
共 39 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   SOLITONS AND DISCRETE EIGENFUNCTIONS OF THE RECURSION OPERATOR OF NONLINEAR EVOLUTION-EQUATIONS .1. THE CAUDREY-DODD-GIBBON-SAWADA-KOTERA EQUATION [J].
AIYER, RN ;
FUCHSSTEINER, B ;
OEVEL, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18) :3755-3770
[3]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[4]  
Belokolos E. D., 1994, Algebro-Geometric Approach to Nonlinear Integrable Equations
[5]  
Bluman G. W., 1989, Symmetries and Differential Equations
[6]   NEW HIERARCHY OF KORTEWEG-DEVRIES EQUATIONS [J].
CAUDREY, PJ ;
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 351 (1666) :407-422
[7]   NONPROPAGATING SOLITONS OF THE VARIABLE-COEFFICIENT AND NONISOSPECTRAL KORTEWEG-DEVRIES EQUATION [J].
CHAN, WL ;
LI, KS .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2521-2527
[8]   New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation [J].
Chen, Y ;
Yan, ZY ;
Zhang, H .
PHYSICS LETTERS A, 2003, 307 (2-3) :107-113
[9]  
Data E., 1981, PHYSICA D, V82, P343
[10]   PROLONGATION STRUCTURE OF A HIGHER-ORDER KORTEWEG-DE VRIES EQUATION [J].
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 358 (1694) :287-296