Predicting trading interactions in an online marketplace through location-based and online social networks

被引:5
作者
Eberhard, Lukas [1 ]
Trattner, Christoph [2 ]
Atzmueller, Martin [3 ]
机构
[1] Graz Univ Technol, Inst Interact Syst & Data Sci, Graz, Austria
[2] Univ Bergen, Dept Informat Sci & Media Studies, Bergen, Norway
[3] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands
来源
INFORMATION RETRIEVAL JOURNAL | 2019年 / 22卷 / 1-2期
关键词
Seller; Buyer; Link prediction; Location-based and online social networks; Second life; Supervised and unsupervised learning; LINK-PREDICTION;
D O I
10.1007/s10791-018-9336-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Link prediction is a prominent research direction e.g.,for inferring upcoming interactions to be used in recommender systems. Although this problem of predicting links between users has been extensively studied in the past, research investigating this issue simultaneously in multiplex networks is rather rare so far. This is the focus of this paper. We investigate the extent to which trading interactions between sellers and buyers within an online marketplace platform can be predicted based on three different but overlapping networksan online social network, a location-based social network and a trading network. In particular, we conducted the study in the context of the virtual world Second Life. For that, we crawled according data of the online social network, user information of the location-based social network obtained by specialized bots, and we extracted purchases of the trading network. Overall, we generated and used57 topological and homophilic features in different constellations to predict trading interactions between user pairs. We focused on both unsupervised as well as supervised learning methods. For supervised learning, we achieved accuracy values up to 92.5%, for unsupervised learning we obtained nDCG values up to over 97% and MAP values up to 75%.
引用
收藏
页码:55 / 92
页数:38
相关论文
共 87 条
[1]   Friends and neighbors on the Web [J].
Adamic, LA ;
Adar, E .
SOCIAL NETWORKS, 2003, 25 (03) :211-230
[2]  
Al Hasan M, 2011, SOCIAL NETWORK DATA ANALYTICS, P243
[3]  
[Anonymous], 2013, P SOTICS 13
[4]  
[Anonymous], ACM TIST
[5]  
[Anonymous], 2009, ACM SIGKDD explorations newsletter, DOI 10.1145/1656274.1656278
[6]  
[Anonymous], CONEXT 08
[7]  
[Anonymous], P ASONAM
[8]  
[Anonymous], SOCIAL NETWORK ANAL
[9]  
[Anonymous], PSYCHOLOGY
[10]  
[Anonymous], IEEE ACM ASONAM