A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type

被引:18
作者
Ezquerro, J. A. [1 ]
Gonzalez, D. [1 ]
Hernandez, M. A. [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26004, Spain
关键词
Hammerstein's equation; Bratu's equation; Newton's method; Kantorovich's theorem; Semilocal convergence; Majorizing sequence; MILD DIFFERENTIABILITY CONDITIONS; OPERATORS;
D O I
10.1016/j.amc.2012.03.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear integral equations of mixed Hammerstein type using Newton's method as follows. We investigate the theoretical significance of Newton's method to draw conclusions about the existence and uniqueness of solutions of these equations. After that, we approximate the solutions of a particular nonlinear integral equation by Newton's method. For this, we use the majorant principle, which is based on the concept of majorizing sequence given by Kantorovich, and milder convergence conditions than those of Kantorovich. Actually, we prove a semilocal convergence theorem which is applicable to situations where Kantorovich's theorem is not. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:9536 / 9546
页数:11
相关论文
共 15 条
[1]   Third-order iterative methods under Kantorovich conditions [J].
Amat, S. ;
Busquier, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) :243-261
[2]   A family of Halley-Chebyshev iterative schemes for non-Frechet differentiable operators [J].
Amat, Sergio ;
Bermudez, Concepcion ;
Busquier, Sonia ;
Mestiri, Driss .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) :486-493
[3]  
[Anonymous], 1990, Integral equations
[4]   THE NEWTON-KANTOROVICH METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS AND THE PTAK ERROR-ESTIMATES [J].
ARGYROS, IK .
MONATSHEFTE FUR MATHEMATIK, 1990, 109 (03) :175-193
[5]   NEWTON-LIKE METHODS UNDER MILD DIFFERENTIABILITY CONDITIONS WITH ERROR ANALYSIS [J].
ARGYROS, IK .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (01) :131-147
[6]   On the Newton-Kantorovich hypothesis for solving equations [J].
Argyros, LK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (02) :315-332
[7]  
Atkinson K.E., 1992, J INTEGR EQUAT APPL, V4, P15
[8]   Dynamics of the solution of Bratu's equation [J].
Caglar, Hikmet ;
Caglar, Nazan ;
Ozer, Mehmet ;
Valaristos, Antonios ;
Miliou, Amalia N. ;
Anagnostopoulos, Antonios N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E672-E678
[9]  
Davis H.T., 1962, Introduction to Nonlinear Differential and Integral Equations
[10]   Halley's method for operators with unbounded second derivative [J].
Ezquerro, J. A. ;
Hernandez, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (03) :354-360