Selecting a Mix of Prevention Strategies against Cervical Cancer for Maximum Efficiency with an Optimization Program

被引:29
作者
Demarteau, Nadia [1 ]
Breuer, Thomas
Standaert, Baudouin [1 ]
机构
[1] GlaxoSmithKline Biol, Hlth Econ, Global Vaccine Dev, B-1300 Wavre, Belgium
关键词
HUMAN-PAPILLOMAVIRUS VACCINE; COST-EFFECTIVENESS; ECONOMIC-EVALUATION; PARTICLE VACCINE; IMPACT; HPV; INTERVENTIONS; ALLOCATION; RESOURCES; TOOL;
D O I
10.2165/11591560-000000000-00000
中图分类号
F [经济];
学科分类号
02 ;
摘要
Background: Screening and vaccination against human papillomavirus (HPV) can protect against cervical cancer. Neither alone can provide 100% protection. Consequently it raises the important question about the most efficient combination of screening at specified time intervals and vaccination to prevent cervical cancer. Objective: Our objective was to identify the mix of cervical cancer prevention strategies (screening and/or vaccination against HPV) that achieves maximum reduction in cancer cases within a fixed budget. Methods: We assessed the optimal mix of strategies for the prevention of cervical cancer using an optimization program. The evaluation used two models. One was a Markov cohort model used as the evaluation model to estimate the costs and outcomes of 52 different prevention strategies. The other was an optimization model in which the results of each prevention strategy of the previous model were entered as input data. The latter model determined the combination of the different prevention options to minimize cervical cancer under budget, screening coverage and vaccination coverage constraints. We applied the model in two countries with different healthcare organizations, epidemiology, screening practices, resource settings and treatment costs: the UK and Brazil. 100 000 women aged 12 years and above across the whole population over a 1-year period at steady state were included. The intervention was papanicolaou (Pap) smear screening programmes and/or vaccination against HPV with the bivalent HPV 16/18 vaccine (Cervarix(R) [Cervarix is a registered trademark of the GlaxoSmithKline group of companies]). The main outcome measures were optimal distribution of the population between different interventions (screening, vaccination, screening plus vaccination and no screening or vaccination) with the resulting number of cervical cancer and associated costs. Results: In the base-case analysis (= same budget as today), the optimal prevention strategy would be, after introducing vaccination with a coverage rate of 80% in girls aged 12 years and retaining screening coverage at pre-vaccination levels (65% in the UK, 50% in Brazil), to increase the screening interval to 6 years (from 3) in the UK and to 5 years (from 3) in Brazil. This would result in a reduction of cervical cancer by 41% in the UK and by 54% in Brazil from pre-vaccination levels with no budget increase. Sensitivity analysis shows that vaccination alone at 80% coverage with no screening would achieve a cervical cancer reduction rate of 20% in the UK and 43% in Brazil compared with the pre-vaccination situation with a budget reduction of 30% and 14%, respectively. In both countries, the sharp reduction in cervical cancer is seen when the vaccine coverage rate exceeds the maximum screening coverage rate, or when screening coverage rate exceeds the maximum vaccine coverage rate, while maintaining the budget. As with any model, there are limitations to the value of predictions depending upon the assumptions made in each model. Conclusions: Spending the same budget that was used for screening and treatment of cervical cancer in the pre-vaccination era, results of the optimization program show that it would be possible to substantially reduce the number of cases by implementing an optimal combination of HPV vaccination (80% coverage) and screening at pre-vaccination coverage (65% UK, 50% Brazil) while extending the screening interval to every 6 years in the UK and 5 years in Brazil.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 48 条
  • [11] Cost-effectiveness analysis of a cervical cancer vaccine in five Latin American countries
    Colantonio, Lisandro
    Gomez, Jorge A.
    Demarteau, Nadia
    Standaert, Baudouin
    Pichon-Riviere, Andres
    Augustovski, Federico
    [J]. VACCINE, 2009, 27 (40) : 5519 - 5529
  • [12] Long-term persistence of anti-HPV-16 and-18 antibodies induced by vaccination with the AS04-adjuvanted cervical cancer vaccine: Modeling of sustained antibody responses
    David, Marie-Pierre
    Van Herck, Koen
    Hardt, Karin
    Tibaldi, Fabian
    Dubin, Gary
    Descamps, Dominique
    Van Damme, Pierre
    [J]. GYNECOLOGIC ONCOLOGY, 2009, 115 (03) : S1 - S6
  • [13] Comparison of detailed and succinct cohort modelling approaches in a multi-regional evaluation of cervical cancer vaccination
    Debicki, Donna
    Ferko, Nicole
    Demarteau, Nadia
    Gallivan, Steve
    Bauch, Chris
    Anonychuk, Andrea
    Mantovani, Lorenzo
    Capri, Stefano
    Chou, Cheng-Yang
    Standaert, Baudouin
    Annemans, Lieven
    [J]. VACCINE, 2008, 26 : F16 - F28
  • [14] Screening for cervical cancer in developing countries
    Denny, Lynette
    Quinn, Michael
    Sankaranarayanan, R.
    [J]. VACCINE, 2006, 24 : 71 - 77
  • [15] Department of Health, 2003, CERV SCREEN PROGR EN
  • [16] Drummond M.F., 1980, Principles in economics appraisal in health care
  • [17] Integer/linear mathematical programming models - A tool for allocating healthcare resources
    Earnshaw, SR
    Dennett, SL
    [J]. PHARMACOECONOMICS, 2003, 21 (12) : 839 - 851
  • [18] Optimal allocation of resources across four interventions for type 2 diabetes
    Earnshaw, SR
    Richter, A
    Sorensen, SW
    Hoerger, TJ
    Hicks, KA
    Engelgau, M
    Thompson, T
    Narayan, KMV
    Williamson, DE
    Gregg, E
    Zhang, P
    [J]. MEDICAL DECISION MAKING, 2002, 22 (05) : S80 - S91
  • [19] A linear programming model for allocating HIV prevention funds with state agencies: A pilot study
    Earnshaw S.R.
    Hicks K.
    Richter A.
    Honeycutt A.
    [J]. Health Care Management Science, 2007, 10 (3) : 239 - 252
  • [20] Efficiency, equity, and budgetary policies: Informing decisions using mathematical programming
    Epstein, David M.
    Chalabi, Zaid
    Claxton, Karl
    Sculpher, Mark
    [J]. MEDICAL DECISION MAKING, 2007, 27 (02) : 128 - 137