Numerical solutions to the Witsenhausen counterexample by approximating networks

被引:33
作者
Baglietto, M [1 ]
Parisini, T
Zoppoli, R
机构
[1] Univ Genoa, Dept Commun Comp & Syst Sci, DIST, I-16145 Genoa, Italy
[2] Politecn Milan, Dept Elect Engn & Informat Sci, I-20133 Milan, Italy
关键词
approximating networks; extended Ritz method; functional optimization; neural networks; Witsenhausen counterexample;
D O I
10.1109/9.948480
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Approximate solutions to the Witsenhausen counterexample are derived by constraining the unknown control functions to take on fixed structures containing "free" parameters to be optimized. Such structures are given by "nonlinear approximating networks," i.e., linear combinations of parametrized basis functions that benefit by density properties in normed linear spaces. This reduces the original functional problem to a nonlinear programming one which is solved via stochastic approximation. The method yields lower values of the costs than the ones achieved so far in the literature, and, most of all, provides rather a complete overview of the shapes of the optimal control functions when the two parameters that characterize the Witsenhausen counterexample vary. One-hidden-layer neural networks are chosen as approximating networks.
引用
收藏
页码:1471 / 1477
页数:7
相关论文
共 23 条
[1]   A neural state estimator with bounded errors for nonlinear systems [J].
Alessandri, A ;
Baglietto, M ;
Parisini, T ;
Zoppoli, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) :2028-2042
[2]  
Baglietto M, 1997, IEEE DECIS CONTR P, P4592, DOI 10.1109/CDC.1997.649703
[3]   Distributed-information neural control: The case of dynamic routing in traffic networks [J].
Baglietto, M ;
Parisini, T ;
Zoppoli, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (03) :485-502
[4]   STOCHASTIC TEAMS WITH NONCLASSICAL INFORMATION REVISITED - WHEN IS AN AFFINE LAW OPTIMAL [J].
BANSAL, R ;
BASAR, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (06) :554-559
[5]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[6]  
BREIMAN L, 1993, IEEE T INFORM THEORY, V39, P993
[7]  
Deng M, 1999, AUTOMATICA, V35, P331, DOI 10.1016/S0005-1098(98)00155-1
[8]  
Gelfand I., 1963, CALCULUS VARIATIONS
[9]  
GIROSI F, 1993, STAT NEURAL NETWORKS
[10]   ANOTHER LOOK AT THE NON-CLASSICAL INFORMATION-STRUCTURE PROBLEM [J].
HO, YC ;
CHANG, TS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (03) :537-540