States on Quantum Structures Versus Integrals

被引:8
作者
Dvurecenskij, Anatolij [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
关键词
Pseudo effect algebra; Effect algebra; Riesz decomposition properties; State; Unital po-group; Simplex; Choquet simplex; Bauer simplex; Pseudo BL-algebra; PSEUDOEFFECT ALGEBRAS;
D O I
10.1007/s10773-011-0693-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show conditions when a state on a quantum structure E like an effect algebra, a pseudo effect algebra E satisfying some kind of the Riesz Decomposition Properties (RDP) or on an MV-algebra, a BL-algebra, a pseudo MV-algebra and a pseudo BL-algebra is an integral through a regular Borel probability measure defined on the Borel sigma-algebra of a Choquet simplex K. In particular, if E satisfies the strongest type of (RDP), the representing Borel probability measure can be uniquely chosen to have its support in the set of the extreme points of K. The same is true for states on an MV-algebra and a BL-algebra and their noncommutative variants.
引用
收藏
页码:3761 / 3777
页数:17
相关论文
共 37 条
[1]  
Alfsen E M., 1971, Compact Convex Sets and Boundary Integrals (Ergebnisse der Mathematik und Ihrer Grenzgebiete) vol 57
[2]  
Alfsen Erik M., 2001, MATH THEORY, V1, DOI 10.1007/978-1-4612-0147-2
[3]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[4]  
[Anonymous], 2002, Multiple-Value Logic
[5]   Phi-symmetric effect algebras [J].
Bennett, MK ;
Foulis, DJ .
FOUNDATIONS OF PHYSICS, 1995, 25 (12) :1699-1722
[6]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[7]  
Bratteli O., 1981, Texts and Monographs in Physics, DOI [10.1007/978-3-662-09089-3, DOI 10.1007/978-3-662-09089-3]
[8]   Loomis-Sikorski theorem and Stone duality for effect algebras with internal state [J].
Buhagiar, David ;
Chetcuti, Emmanuel ;
Dvurecenskij, Anatolij .
FUZZY SETS AND SYSTEMS, 2011, 172 (01) :71-86
[9]  
Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI [DOI 10.1090/S0002-9947-1958-0094302-9, 10.1090/S0002-9947-1958-0094302-9]
[10]  
Cignoli R., 2013, Algebraic foundations of many-valued reasoning, V7