Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing

被引:120
作者
Sathiyamoorthi, Praveen [1 ,2 ]
Moon, Jongun [1 ,2 ]
Bae, Jae Wung [1 ,2 ]
Asghari-Rad, Peyman [1 ,2 ]
Kim, Hyoung Seop [1 ,2 ,3 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
[3] Pohang Univ Sci & Technol POSTECH, GIFT, Pohang 37673, South Korea
[4] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Ultrafine-grain; Cryogenic tensile strength; Nanotwins; CoCrNi alloy; High-pressure torsion; TEMPERATURE-DEPENDENCE; DEFORMATION; STRENGTH; STRESS; MECHANISM; DUCTILITY; BEHAVIOR; SIZE;
D O I
10.1016/j.scriptamat.2019.01.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrafine-grained materials with nanotwins are expected to produce a remarkable combination of strength and ductility. In the present study, ultrafine-grained CoCrNi medium-entropy alloy with nanotwins is fabricated by high-pressure torsion followed by annealing; and investigated for cryogenic tensile properties. The alloy exhibits superior cryogenic tensile properties with a tensile strength of similar to 2 GPa and tensile strain of similar to 27%. The cryogenic tensile strength of ultrafine-grained sample increased by 67% as compared to the cryogenic tensile strength of coarse-grained sample due to fine grain size, annealing nanotwins, residual dislocation density, and strong temperature dependence of yield strength. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 43 条
  • [1] High temperature deformation in fine grained high entropy alloys
    Chokshi, Atul H.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 : 152 - 161
  • [2] Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation
    Cizek, J.
    Hausild, P.
    Cieslar, M.
    Melikhova, O.
    Vlasak, T.
    Janecek, M.
    Kral, R.
    Harcuba, P.
    Lukac, F.
    Zyka, J.
    Malek, J.
    Moon, J.
    Kim, H. S.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 768 : 924 - 937
  • [3] Annealing twins in nanocrystalline fcc metals: A molecular dynamics simulation
    Farkas, Diana
    Bringa, Eduardo
    Caro, Alfredo
    [J]. PHYSICAL REVIEW B, 2007, 75 (18)
  • [4] A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength
    Fu, Zhiqiang
    Jiang, Lin
    Wardini, Jenna L.
    MacDonald, Benjamin E.
    Wen, Haiming
    Xiong, Wei
    Zhang, Dalong
    Zhou, Yizhang
    Rupert, Timothy J.
    Chen, Weiping
    Lavernia, Enrique J.
    [J]. SCIENCE ADVANCES, 2018, 4 (10):
  • [5] Tensile properties of high- and medium-entropy alloys
    Gali, A.
    George, E. P.
    [J]. INTERMETALLICS, 2013, 39 : 74 - 78
  • [6] Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
    Gludovatz, Bernd
    Hohenwarter, Anton
    Thurston, Keli V. S.
    Bei, Hongbin
    Wu, Zhenggang
    George, Easo P.
    Ritchie, Robert O.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [7] A fracture-resistant high-entropy alloy for cryogenic applications
    Gludovatz, Bernd
    Hohenwarter, Anton
    Catoor, Dhiraj
    Chang, Edwin H.
    George, Easo P.
    Ritchie, Robert O.
    [J]. SCIENCE, 2014, 345 (6201) : 1153 - 1158
  • [8] The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel
    Gutierrez-Urrutia, I.
    Zaefferer, S.
    Raabe, D.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (15): : 3552 - 3560
  • [9] Hall-Petch relation and boundary strengthening
    Hansen, N
    [J]. SCRIPTA MATERIALIA, 2004, 51 (08) : 801 - 806
  • [10] Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy
    Hong, Sun Ig
    Moon, Jongun
    Hong, Soon Ku
    Kim, Hyoung Seop
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 : 569 - 576