Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing

被引:129
作者
Sathiyamoorthi, Praveen [1 ,2 ]
Moon, Jongun [1 ,2 ]
Bae, Jae Wung [1 ,2 ]
Asghari-Rad, Peyman [1 ,2 ]
Kim, Hyoung Seop [1 ,2 ,3 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
[3] Pohang Univ Sci & Technol POSTECH, GIFT, Pohang 37673, South Korea
[4] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Ultrafine-grain; Cryogenic tensile strength; Nanotwins; CoCrNi alloy; High-pressure torsion; TEMPERATURE-DEPENDENCE; DEFORMATION; STRENGTH; STRESS; MECHANISM; DUCTILITY; BEHAVIOR; SIZE;
D O I
10.1016/j.scriptamat.2019.01.016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultrafine-grained materials with nanotwins are expected to produce a remarkable combination of strength and ductility. In the present study, ultrafine-grained CoCrNi medium-entropy alloy with nanotwins is fabricated by high-pressure torsion followed by annealing; and investigated for cryogenic tensile properties. The alloy exhibits superior cryogenic tensile properties with a tensile strength of similar to 2 GPa and tensile strain of similar to 27%. The cryogenic tensile strength of ultrafine-grained sample increased by 67% as compared to the cryogenic tensile strength of coarse-grained sample due to fine grain size, annealing nanotwins, residual dislocation density, and strong temperature dependence of yield strength. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 43 条
[1]   High temperature deformation in fine grained high entropy alloys [J].
Chokshi, Atul H. .
MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 :152-161
[2]   Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J].
Cizek, J. ;
Hausild, P. ;
Cieslar, M. ;
Melikhova, O. ;
Vlasak, T. ;
Janecek, M. ;
Kral, R. ;
Harcuba, P. ;
Lukac, F. ;
Zyka, J. ;
Malek, J. ;
Moon, J. ;
Kim, H. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 768 :924-937
[3]   Annealing twins in nanocrystalline fcc metals: A molecular dynamics simulation [J].
Farkas, Diana ;
Bringa, Eduardo ;
Caro, Alfredo .
PHYSICAL REVIEW B, 2007, 75 (18)
[4]   A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J].
Fu, Zhiqiang ;
Jiang, Lin ;
Wardini, Jenna L. ;
MacDonald, Benjamin E. ;
Wen, Haiming ;
Xiong, Wei ;
Zhang, Dalong ;
Zhou, Yizhang ;
Rupert, Timothy J. ;
Chen, Weiping ;
Lavernia, Enrique J. .
SCIENCE ADVANCES, 2018, 4 (10)
[5]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[6]   Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Thurston, Keli V. S. ;
Bei, Hongbin ;
Wu, Zhenggang ;
George, Easo P. ;
Ritchie, Robert O. .
NATURE COMMUNICATIONS, 2016, 7
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel [J].
Gutierrez-Urrutia, I. ;
Zaefferer, S. ;
Raabe, D. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (15) :3552-3560
[9]   Hall-Petch relation and boundary strengthening [J].
Hansen, N .
SCRIPTA MATERIALIA, 2004, 51 (08) :801-806
[10]   Thermally activated deformation and the rate controlling mechanism in CoCrFeMnNi high entropy alloy [J].
Hong, Sun Ig ;
Moon, Jongun ;
Hong, Soon Ku ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 682 :569-576