Pseudo-differential operators and logarithmic Schatten classes

被引:0
作者
Yoshitomi, Kazushi [1 ]
Horita, Keisuke [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math Sci, Minamiohsawa 1-1, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
VON-NEUMANN PROPERTIES;
D O I
10.1007/s00526-022-02195-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Hilbert space H and positive numbers p and q, let S-p(,q) (H) stand for the class of those compact operators A on H such that Sigma(infinity)(j=1) s(j) (A)(P) vertical bar log s(j) (A)vertical bar(q) < infinity, where s(j) (A) is the jth singular value of A counted from above with multiplicity. We characterize those weights M such that for any symbol alpha is an element of S(M; Phi, Psi) the Weyl quantization of a belongs to S-p,S-q (L-2).
引用
收藏
页数:20
相关论文
共 11 条
  • [1] [Anonymous], 1994, Non-Commutative Differential Geometry
  • [2] Complex powers of hypoelliptic pseudodifferential operators
    Buzano, Ernesto
    Nicola, Fabio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 245 (02) : 353 - 378
  • [3] Schatten-von Neumann properties in the Weyl calculus
    Buzano, Ernesto
    Toft, Joachim
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (12) : 3080 - 3114
  • [4] Dunford N., 1963, LINEAR OPERATORS PAR
  • [5] Engelking R., 1989, GEN TOPOLOGY
  • [6] Dixmier traces and extrapolation description of noncommutative Lorentz spaces
    Gayral, Victor
    Sukochev, Fedor
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (10) : 6256 - 6317
  • [7] LIPSCHITZ FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE
    MACIAS, RA
    SEGOVIA, C
    [J]. ADVANCES IN MATHEMATICS, 1979, 33 (03) : 257 - 270
  • [8] Martinez Carracedo C., 2001, N HOLLAND MATH STUDI, V187
  • [9] Nicola F, 2010, PSEUDO DIFFER OPER, V4, P1, DOI 10.1007/978-3-7643-8512-5
  • [10] Dixmier Traceability for General Pseudo-differential Operators
    Nicola, Fabio
    Rodino, Luigi
    [J]. C(ASTERISK)-ALGEBRAS AND ELLIPTIC THEORY II, 2008, : 227 - +