Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction

被引:538
作者
Oh, Hyung-Suk [1 ]
Hong Nhan Nong [1 ]
Reier, Tobias [1 ]
Bergmann, Arno [1 ]
Gliech, Manuel [1 ]
de Araujo, Jorge Ferreira [1 ]
Willinger, Elena [2 ]
Schloegl, Robert [2 ]
Teschner, Detre [2 ]
Strasser, Peter [1 ]
机构
[1] Tech Univ Berlin, Electrochem Energy Catalysis & Mat Sci Lab, Dept Chem, Div Chem Engn, D-10623 Berlin, Germany
[2] Max Planck Gesell, Fritz Haber Inst, Abt Anorgan Chem, D-14195 Berlin, Germany
关键词
X-RAY-ABSORPTION; MEMBRANE FUEL-CELLS; REDUCTION REACTION ACTIVITY; PHOTOELECTRON-SPECTROSCOPY; CARBON SUPPORT; ELECTROCATALYST SUPPORTS; ELECTRONIC-STRUCTURE; ACIDIC ENVIRONMENTS; METHANOL OXIDATION; PEM ELECTROLYSIS;
D O I
10.1021/jacs.6b07199
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox-active support materials can help reduce the noble-metal loading of a solid chemical catalyst while offering electronic catalyst-support interactions beneficial for catalyst durability. This is well known in heterogeneous gas-phase catalysis but much less discussed for electrocatalysis at electrified liquid-solid interfaces. Here, we demonstrate experimental evidence for electronic catalyst-support interactions in electrochemical environments and study their role and contribution to the corrosion stability of catalyst/support couples. Electrochemically oxidized Ir oxide nanoparticles, supported on high surface area carbons and oxides, were selected as model catalyst/support systems for the electrocatalytic oxygen evolution reaction (OER). First, the electronic, chemical, and structural state of the catalyst/support couple was compared using XANES, EXAFS, TEM, and depth-resolved XPS. While carbon-supported oxidized Ir particle showed exclusively the redox state (+4), the Ir/IrOx/ATO system exhibited evidence of metal/metaloxide support interactions (MMOSI) that stabilized the metal particles on antimony-doped tin oxide (ATO) in sustained lower Ir oxidation states (Ir3.2+). At the same time, the growth of higher valent Ir oxide layers that compromise catalyst stability was suppressed. Then the electrochemical stability and the charge-transfer kinetics of the electrocatalysts were evaluated under constant current and constant potential conditions, where the analysis of the metal dissolution confirmed that the ATO support mitigates Irz+ dissolution thanks to a stronger MMOSI effect. Our findings raise the possibility that MMOSI effects in electrochemistry-largely neglected in the past-may be more important for a detailed understanding of the durability of oxide-supported nanoparticle OER catalysts than previously thought.
引用
收藏
页码:12552 / 12563
页数:12
相关论文
共 81 条
[1]   Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs [J].
Akalework, Nibret Gebeyehu ;
Pan, Chun-Jern ;
Su, Wei-Nien ;
Rick, John ;
Tsai, Mon-Che ;
Lee, Jyh-Fu ;
Lin, Jhih-Min ;
Tsai, Li-Duan ;
Hwang, Bing-Joe .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) :20977-20985
[2]  
[Anonymous], CHEM ENG MAT SCI
[3]   Polymer supports for low-temperature fuel cell catalysts [J].
Antolini, E. ;
Gonzalez, E. R. .
APPLIED CATALYSIS A-GENERAL, 2009, 365 (01) :1-19
[4]   Ceramic materials as supports for low-temperature fuel cell catalysts [J].
Antolini, E. ;
Gonzalez, E. R. .
SOLID STATE IONICS, 2009, 180 (9-10) :746-763
[5]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[6]   Graphene as a new carbon support for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 123 :52-68
[7]   Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts [J].
Ardizzone, S ;
Bianchi, CL ;
Cappelletti, G ;
Ionita, M ;
Minguzzi, A ;
Rondinini, S ;
Vertova, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 589 (01) :160-166
[8]   PEM electrolysis for production of hydrogen from renewable energy sources [J].
Barbir, F .
SOLAR ENERGY, 2005, 78 (05) :661-669
[9]   Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy [J].
Bluhm, H ;
Hävecker, M ;
Knop-Gericke, A ;
Kleimenov, E ;
Schlögl, R ;
Teschner, D ;
Bukhtiyarov, VI ;
Ogletree, DF ;
Salmeron, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (38) :14340-14347
[10]   WHITE LINES IN X-RAY ABSORPTION [J].
BROWN, M ;
PEIERLS, RE ;
STERN, EA .
PHYSICAL REVIEW B, 1977, 15 (02) :738-744