Human-Knowledge-Augmented Gaussian Process Regression for State-of-Health Prediction of Lithium-Ion Batteries With Charging Curves

被引:10
|
作者
Zhou, Quan [1 ]
Wang, Chongming [2 ]
Sun, Zeyu [1 ]
Li, Ji [1 ]
Williams, Huw [1 ]
Xu, Hongming [1 ]
机构
[1] Univ Birmingham, Vehicle Res Ctr, Birmingham B15 2TT, W Midlands, England
[2] Coventry Univ, Inst Future Transport & Cities, Coventry CV1 5FB, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
analysis and design of components; devices and systems; batteries; novel numerical and analytical simulations; artificial intelligence; ENERGY MANAGEMENT; PROGNOSTICS; DIAGNOSIS;
D O I
10.1115/1.4050798
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries have been widely used in renewable energy storage and electric vehicles, and state-of-health (SoH) prediction is critical for battery safety and reliability. Following the standard SoH prediction routine based on charging curves, a human-knowledge-augmented Gaussian process regression (HAGPR) model is proposed by incorporating two promising artificial intelligence techniques, i.e., the Gaussian process regression (GPR) and the adaptive neural fuzzy inference system (ANFIS). Human knowledge on voltage profile during battery degradation is first modeled with an ANFIS for feature extraction that helps reduce the need for physical testing. Then, the ANFIS is integrated with a GPR model to enable SoH prediction. Using a GPR model as the baseline, a comparison study is conducted to demonstrate the advantage of the proposed HAGPR model. It indicates that the proposed HAGPR model can reduce at least 12% root-mean-square error with 31.8% less battery aging testing compared to the GPR model.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] State-of-Health Prediction For Lithium-Ion Batteries With Multiple Gaussian Process Regression Model
    Zheng, Xueying
    Deng, Xiaogang
    IEEE ACCESS, 2019, 7 : 150383 - 150394
  • [2] State-of-health estimation for lithium-ion batteries using differential thermal voltammetry and Gaussian process regression
    Wang, Ping
    Peng, Xiangyuan
    Ze, Cheng
    JOURNAL OF POWER ELECTRONICS, 2022, 22 (07) : 1165 - 1175
  • [3] State-of-Health Estimation for Lithium-Ion Batteries Based on the Multi-Island Genetic Algorithm and the Gaussian Process Regression
    Wang, Zhenpo
    Ma, Jun
    Zhang, Lei
    IEEE ACCESS, 2017, 5 : 21286 - 21295
  • [4] A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve
    Yang, Duo
    Zhang, Xu
    Pan, Rui
    Wang, Yujie
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2018, 384 : 387 - 395
  • [5] State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble
    Yu, Jianbo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 174 : 82 - 95
  • [6] The Application Of Gaussian Process Regression In State Of Health Prediction Of Lithium Ion Batteries
    Zhang, Yanqin
    Zhang, Huafeng
    Tian, Zhiwei
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 515 - 519
  • [7] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [8] Online state-of-health prediction of lithium-ion batteries with limited labeled data
    Yu, Jinsong
    Yang, Jie
    Wu, Yao
    Tang, Diyin
    Dai, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11345 - 11353
  • [9] Perspective on State-of-Health Determination in Lithium-Ion Batteries
    Dubarry, Matthieu
    Baure, George
    Ansean, David
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (04)
  • [10] SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators
    Jia, Jianfang
    Liang, Jianyu
    Shi, Yuanhao
    Wen, Jie
    Pang, Xiaoqiong
    Zeng, Jianchao
    ENERGIES, 2020, 13 (02)