Cross-Dataset Data Augmentation for Convolutional Neural Networks Training

被引:0
作者
Gasparetto, Andrea [1 ]
Ressi, Dalila [1 ]
Bergamasco, Filippo [1 ]
Pistellato, Mara [1 ]
Cosmo, Luca [1 ]
Boschetti, Marco [1 ]
Ursella, Enrico [1 ]
Albarelli, Andrea [1 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Sci Ambientali Informat & Stat, Via Torino 155, Venice, Italy
来源
2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Within modern Deep Learning setups, data augmentation is the weapon of choice when dealing with narrow datasets or with a poor range of different samples. However, the benefits of data augmentation are abysmal when applied to a dataset which is inherently unable to cover all the categories to be classified with a significant number of samples. To deal with such desperate scenarios, we propose a possible last resort: Cross-Dataset Data Augmentation. That is, the creation of new samples by morphing observations from a different source into credible specimens for the training dataset. Of course specific and strict conditions must be satisfied for this trick to work. In this paper we propose a general set of strategies and rules for Cross-Dataset Data Augmentation and we demonstrate its feasibility over a concrete case study. Even without defining any new formal approach, we think that the preliminary results of our paper are worth to produce a broader discussion on this topic.
引用
收藏
页码:910 / 915
页数:6
相关论文
共 14 条
[1]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[2]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[5]  
Olivas E.S., 2009, Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques, DOI 10.4018/978-1-6056-6766-9&BUYLINK=TRUE
[6]   Learning Deep Object Detectors from 3D Models [J].
Peng, Xingchao ;
Sun, Baochen ;
Ali, Karim ;
Saenko, Kate .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1278-1286
[7]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[8]  
Schmid C., 2016, Advances in neural information processing systems, P3108
[9]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[10]  
SZEGEDY C, 2016, PROC CVPR IEEE, P2818, DOI [DOI 10.1109/CVPR.2016.308, 10.1109/CVPR.2016.308]