Exponential stability for impulsive delay differential equations by Razumikhin method

被引:80
作者
Wang, Q [1 ]
Liu, XZ [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Razumikhin technique; Lyapunov function; impulsive delay differential equation; exponential stability;
D O I
10.1016/j.jmaa.2004.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study exponential stability for impulsive delay differential equation of the form (x)over dot(t) = f(t, x(t)) t not equal t(k), Delta x (t) = I-k (t, x(t-)), t = t(k), k is an element of N. By employing the Razumikhin technique and Lyapunov functions, several exponential stability criteria are established. Some examples are also discussed to illustrate our results. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:462 / 473
页数:12
相关论文
共 20 条
[1]   EXPONENTIAL STABILITY OF LINEAR DELAY IMPULSIVE DIFFERENTIAL-EQUATIONS [J].
ANOKHIN, A ;
BEREZANSKY, L ;
BRAVERMAN, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 193 (03) :923-941
[2]  
Ballinger G, 1999, DYN CONTIN DISCRET I, V5, P579
[3]  
BALLINGER G, 2001, PRACTICAL STABILITY
[4]  
Berezanski L., 1998, COMMUN APPL ANAL, V2, P301
[5]   ON DELAY DIFFERENTIAL-EQUATIONS WITH IMPULSES [J].
GOPALSAMY, K ;
ZHANG, BG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (01) :110-122
[6]  
Hale J.K., 1993, Introduction to Functional Differential Equations, DOI DOI 10.1007/978-1-4612-4342-7
[7]  
Kolmanovskii V. B., 1986, MATH SCI ENG, V180
[8]   STABILITY-CRITERIA FOR IMPULSIVE DIFFERENTIAL-EQUATIONS IN TERMS OF 2 MEASURES [J].
LAKSHMIKANTHAM, V ;
LIU, XZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 137 (02) :591-604
[9]  
Lakshmikantham V, 1989, STABILITY ANAL NONLI
[10]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6