Erosive burning of a solid propellant in a supersonic flow

被引:1
作者
Arkhipov, VA [1 ]
Zimin, DA [1 ]
机构
[1] Tomsk State Univ, Inst Appl Math & Mech, Tomsk 634050, Russia
关键词
Mach Number; Supersonic Flow; Solid Propellant; Critical Cross Section; Erosion Coefficient;
D O I
10.1007/BF02671818
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present results of an experimental study of burning of a ballistite solid propellant (gun powder Ii) in a supersonic how. It is shown that the criterial dependence of the erosion coefficient on the Vilyunov parameter obtained on the basis of experimental results in a subsonic and a supersonic how describes satisfactorily experimental data for a supersonic flow in the examined range of Mach numbers M = 1-2.8 as well. A more correct approximation formula for the range of parameters considered is derived. The specific features of the how along the surface of a solid propellant at M > 1 is analyzed, and this analysis has revealed some problems in the interpretation of experimental data.
引用
收藏
页码:55 / 57
页数:3
相关论文
共 50 条
[31]   Burning of Solid Propellant in Gas Generator of an Air-Breathing Engine at Large Content of Metal [J].
A. V. Baikov ;
A. F. Zholudev ;
M. B. Kislov ;
I. V. Puchkovskii ;
M. S. Sharov ;
A. V. Shikhovtsev ;
L. S. Yanovskii .
Russian Journal of Applied Chemistry, 2019, 92 :602-606
[32]   Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation [J].
Ni, Yan-jie ;
Jin, Yong ;
Wan, Gang ;
Yang, Chun-xia ;
Li, Hai-yuan ;
Li, Bao-ming .
DEFENCE TECHNOLOGY, 2016, 12 (02) :81-85
[33]   Oscillatory Pressure Effect on Mean Burning Rates of Solid Propellant Combustion at Low Frequency Conditions [J].
Kathiravan, Balusamy ;
Rajak, Rajendra ;
Senthilkumar, Chidambaram ;
Jayaraman, Kandasamy .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2019, 44 (03) :369-378
[34]   Calculation of solid-propellant burning rates from condensed-phase decomposition kinetics [J].
Waesche, RHW ;
Wenograd, J .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2000, 36 (01) :125-134
[35]   Calculation of solid-propellant burning rates from condensed-phase decomposition kinetics [J].
R. H. W. Waesche ;
J. Wenograd .
Combustion, Explosion and Shock Waves, 2000, 36 :125-134
[36]   Microwave plasma enhancement of multiphase flames: On-demand control of solid propellant burning rate [J].
Barkley, Stuart J. ;
Zhu, Keke ;
Lynch, Joel E. ;
Michael, James B. ;
Sippel, Travis R. .
COMBUSTION AND FLAME, 2019, 199 :14-23
[37]   Burning of Solid Propellant in Gas Generator of an Air-Breathing Engine at Large Content of Metal [J].
Baikov, A., V ;
Zholudev, A. F. ;
Kislov, M. B. ;
Puchkovskii, I., V ;
Sharov, M. S. ;
Shikhovtsev, A., V ;
Yanovskii, L. S. .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2019, 92 (05) :602-606
[38]   Study on energy characterization method of friction sensitivity about high-burning rate solid propellant [J].
Chu, Hua ;
Huang, Ting ;
Wang, Guojuan ;
Guo, Feige .
ELECTRICAL POWER & ENERGY SYSTEMS, PTS 1 AND 2, 2012, 516-517 :448-+
[39]   Ballistic properties and burning behaviour of an ammonium perchlorate/guanidine nitrate/sodium nitrate airbag solid propellant [J].
Ulas, A. ;
Risha, G. A. ;
Kuo, K. K. .
FUEL, 2006, 85 (14-15) :1979-1986
[40]   Cross-flow effect on combustion of a solid propellant with harmonically varying pressure [J].
B. V. Novozhilov .
Combustion, Explosion, and Shock Waves, 2007, 43 :429-434