Absorptive carbon nanotube electrodes: Consequences of optical interference loss in thin film solar cells

被引:8
作者
Tait, Jeffrey G. [1 ,2 ]
De Volder, Michal F. L. [3 ]
Cheyns, David [2 ]
Heremans, Paul [1 ,2 ]
Rand, Barry P. [4 ,5 ]
机构
[1] KULeuven, Dept Elect Engn, B-3001 Leuven, Belgium
[2] IMEC, B-3001 Leuven, Belgium
[3] Univ Cambridge, Dept Engn, Cambridge CB3 0FS, England
[4] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
基金
欧洲研究理事会;
关键词
SILVER; TRANSPARENT; FABRICATION; LAYER; COLLECTION;
D O I
10.1039/c5nr01119a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Omega square(-1), comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photo-current generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C-61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.
引用
收藏
页码:7259 / 7266
页数:8
相关论文
共 53 条
[1]  
[Anonymous], 2014, Sci.Rep.
[2]  
[Anonymous], 2014, Critical raw materials for the EU, DOI DOI 10.13140/RG.2.2.15194.03526
[3]   Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer [J].
Barnes, Teresa M. ;
Bergeson, Jeremy D. ;
Tenent, Robert C. ;
Larsen, Brian A. ;
Teeter, Glenn ;
Jones, Kim M. ;
Blackburn, Jeffrey L. ;
van de Lagemaat, Jao .
APPLIED PHYSICS LETTERS, 2010, 96 (24)
[4]   Estimation of cumulative aquatic exposure and risk due to silver:: Contribution of nano-functionalized plastics and textiles [J].
Blaser, Sabine A. ;
Scheringer, Martin ;
MacLeod, Matthew ;
Hungerbuehler, Konrad .
SCIENCE OF THE TOTAL ENVIRONMENT, 2008, 390 (2-3) :396-409
[5]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[6]   Nanosilver: A nanoproduct in medical application [J].
Chen, X. ;
Schluesener, H. J. .
TOXICOLOGY LETTERS, 2008, 176 (01) :1-12
[7]   8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer [J].
Cnops, Kjell ;
Rand, Barry P. ;
Cheyns, David ;
Verreet, Bregt ;
Empl, Max A. ;
Heremans, Paul .
NATURE COMMUNICATIONS, 2014, 5
[8]   Predicting the costs of photovoltaic solar modules in 2020 using experience curve models [J].
de la Tour, Arnaud ;
Glachant, Matthieu ;
Meniere, Yann .
ENERGY, 2013, 62 :341-348
[9]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[10]   Influence of doping on charge carrier collection in normal and inverted geometry polymer: fullerene solar cells [J].
Dibb, George F. A. ;
Muth, Mathis-Andreas ;
Kirchartz, Thomas ;
Engmann, Sebastian ;
Hoppe, Harald ;
Gobsch, Gerhard ;
Thelakkat, Mukundan ;
Blouin, Nicolas ;
Tierney, Steve ;
Carrasco-Orozco, Miguel ;
Durrant, James R. ;
Nelson, Jenny .
SCIENTIFIC REPORTS, 2013, 3