Perovskite Solar Cells with Carbon-Based Electrodes - Quantification of Losses and Strategies to Overcome Them

被引:48
作者
Bogachuk, Dmitry [1 ]
Yang, Bowen [2 ,3 ]
Suo, Jiajia [2 ,3 ]
Martineau, David [4 ]
Verma, Anand [4 ]
Narbey, Stephanie [4 ]
Anaya, Miguel [5 ,6 ]
Frohna, Kyle [5 ]
Doherty, Tiarnan [5 ]
Mueller, David [1 ,7 ]
Herterich, Jan P. [1 ,7 ]
Zouhair, Salma [1 ,8 ]
Hagfeldt, Anders [2 ,3 ]
Stranks, Samuel D. [5 ,6 ]
Wuerfel, Uli [1 ,7 ]
Hinsch, Andreas [1 ]
Wagner, Lukas [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Ecole Polytech Fed Lausanne EPFL, Lab Photomol Sci, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[3] Uppsala Univ, Dept Chem, Angstrom Lab, SE-75120 Uppsala, Sweden
[4] Solaronix SA, Rue Ouriette 129, CH-1170 Aubonne, Switzerland
[5] Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England
[6] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[7] Univ Freiburg, Mat Res Ctr FMF, Stefan Meier Str 21, D-79104 Freiburg, Germany
[8] Abdelmalek Essaadi Univ, FSTT, Thin Films & Nanomat Lab, Tangier 90000, Morocco
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
carbon-based electrodes; HTL-free; perovskites; photovoltaics; recombination; HOLE-CONDUCTOR-FREE; METHYLAMMONIUM LEAD IODIDE; GRAIN-SIZE; TEMPERATURE; FILMS; PERFORMANCE; DESIGN; IMPACT;
D O I
10.1002/aenm.202103128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-based electrodes represent a promising approach to improve stability and up-scalability of perovskite photovoltaics. The temperature at which these contacts are processed defines the absorber grain size of the perovskite solar cell: in cells with low-temperature carbon-based electrodes (L-CPSCs), layer-by-layer deposition is possible, allowing perovskite crystals to be large (>100 nm), while in cells with high-temperature carbon-based contacts (H-CPSCs), crystals are constrained to 10-20 nm in size. To enhance the power conversion efficiency of these devices, the main loss mechanisms are identified for both systems. Measurements of charge carrier lifetime, quasi-Fermi level splitting (QFLS) and light-intensity-dependent behavior, supported by numerical simulations, clearly demonstrate that H-CPSCs strongly suffer from non-radiative losses in the perovskite absorber, primarily due to numerous grain boundaries. In contrast, large crystals of L-CPSCs provide a long carrier lifetime (1.8 mu s) and exceptionally high QFLS of 1.21 eV for an absorber bandgap of 1.6 eV. These favorable characteristics explain the remarkable open-circuit voltage of over 1.1 V in hole-selective layer-free L-CPSCs. However, the low photon absorption and poor charge transport in these cells limit their potential. Finally, effective strategies are provided to reduce non-radiative losses in H-CPSCs, transport losses in L-CPSCs, and to improve photon management in both cell types.
引用
收藏
页数:13
相关论文
共 79 条
[1]  
Abou-Ras D., 2011, ADV CHARACTERIZATION
[2]   Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites [J].
Adhyaksa, Gede W. P. ;
Brittman, Sarah ;
Abolins, Haralds ;
Lof, Andries ;
Li, Xueying ;
Keelor, Joel D. ;
Luo, Yanqi ;
Duevski, Teodor ;
Heeren, Ron M. A. ;
Ellis, Shane R. ;
Fenning, David P. ;
Garnett, Erik C. .
ADVANCED MATERIALS, 2018, 30 (52)
[3]  
Ball JM, 2016, NAT ENERGY, V1, P1, DOI [10.1038/NENERGY.2016.149, 10.1038/nenergy.2016.149]
[4]   Comparison of highly conductive natural and synthetic graphites for electrodes in perovskite solar cells [J].
Bogachuk, Dmitry ;
Tsuji, Ryuki ;
Martineau, David ;
Narbey, Stephanie ;
Herterich, Jan P. ;
Wagner, Lukas ;
Suginuma, Kumiko ;
Ito, Seigo ;
Hinsch, Andreas .
CARBON, 2021, 178 :10-18
[5]   Low-temperature carbon-based electrodes in perovskite solar cells [J].
Bogachuk, Dmitry ;
Zouhair, Salma ;
Wojciechowski, Konrad ;
Yang, Bowen ;
Babu, Vivek ;
Wagner, Lukas ;
Xu, Bo ;
Lim, Jaekeun ;
Mastroianni, Simone ;
Pettersson, Henrik ;
Hagfeldt, Anders ;
Hinsch, Andreas .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :3880-3916
[6]   Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Cheacharoen, Rongrong ;
Bush, Kevin A. ;
Prasanna, Rohit ;
Leijtens, Tomas ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (07) :1772-1778
[7]   The Role of Grain Boundaries in Perovskite Solar Cells [J].
Castro-Mendez, Andres-Felipe ;
Hidalgo, Juanita ;
Correa-Baena, Juan-Pablo .
ADVANCED ENERGY MATERIALS, 2019, 9 (38)
[8]   Imperfections and their passivation in halide perovskite solar cells [J].
Chen, Bo ;
Rudd, Peter N. ;
Yang, Shuang ;
Yuan, Yongbo ;
Huang, Jinsong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) :3842-3867
[9]   Solvent effect on the hole-conductor-free fully printable perovskite solar cells [J].
Chen, Jiangzhao ;
Xiong, Yuli ;
Rong, Yaoguang ;
Mei, Anyi ;
Sheng, Yusong ;
Jiang, Pei ;
Hu, Yue ;
Li, Xiong ;
Han, Hongwei .
NANO ENERGY, 2016, 27 :130-137
[10]   Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells [J].
Choi, Joshua J. ;
Yang, Xiaohao ;
Norman, Zachariah M. ;
Billinge, Simon J. L. ;
Owen, Jonathan S. .
NANO LETTERS, 2014, 14 (01) :127-133