A distance-dependent knowledge-based potential for prote-in-protein interactions is derived and tested for application in protein design. Information on residue type specific C. and C-beta pair distances is extracted from complex crystal structures in the Protein Data Bank and used in the form of radial distribution functions. The use of only backbone and C-beta position information allows generation of relative protein-protein orientation poses with minimal sidechain information. Further coarse-graining can be done simply in the same theoretical framework to give potentials for residues of known type interacting with unknown type, as in a one-sided interface design problem. Both interface design via pose generation followed by sidechain repacking and localized protein-protein docking tests are performed on 39 non-redundant antibody-antigen complexes for which crystal structures are available. As reference, Lennard-Jones potentials, unspecific for residue type and biasing toward varying degrees of residue pair separation are used as controls. For interface design, the knowledge-based potentials give the best combination of consistently designable poses, low RMSD to the known structure, and more tightly bound interfaces with no added computational cost. 77% of the poses could be designed to give complexes with negative free energies of binding. Generally, larger interface separation promotes designability, but weakens the binding of the resulting designs. A localized docking test shows that the knowledge-based nature of the potentials improves performance and compares respectably with more sophisticated all-atoms potentials.