Linker Histones Incorporation Maintains Chromatin Fiber Plasticity

被引:21
作者
Recouvreux, Pierre [1 ]
Lavelle, Christophe [1 ,2 ,3 ]
Barbi, Maria [4 ]
Conde e Silva, Natalia [5 ]
Le Cam, Eric [2 ]
Victor, Jean-Marc [4 ]
Viovy, Jean-Louis [1 ]
机构
[1] Univ Paris 06, Inst Curie, Ctr Natl Rech Sci, UMR 168, Paris, France
[2] Inst Gustave Roussy, Ctr Natl Rech Sci, UMR 8126, Villejuif, France
[3] Museum Natl Hist Nat, Ctr Natl Rech Sci UMR 7196, INSERM, U565, F-75231 Paris, France
[4] Ctr Natl Rech Sci, Lab Phys Theor Mat Condensee, UMR 7600, Paris, France
[5] Inst Jacques Monod, Ctr Natl Rech Sci, UMR 7592, F-75251 Paris, France
关键词
INDIVIDUAL NUCLEOSOMES; TORSIONAL STRESS; DNA; REVEALS; ELASTICITY; PROTEINS; DYNAMICS; MOLECULE; FORCES; FORM;
D O I
10.1016/j.bpj.2011.03.064
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Genomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo. We had previously shown that under positive torsional constraints, nucleosomes can undergo a reversible chiral transition toward a state of positive topology. We demonstrate here that chromatin fibers comprising linker histones present a torsional plasticity similar to that of naked nucleosome arrays. Chromatosomes can undergo a reversible chiral transition toward a state of positive torsion (reverse chromato-some) without loss of linker histones.
引用
收藏
页码:2726 / 2735
页数:10
相关论文
共 31 条
[21]   Forces and torques in the nucleus: chromatin under mechanical constraints [J].
Lavelle, Christophe .
BIOCHEMISTRY AND CELL BIOLOGY, 2009, 87 (01) :307-322
[22]   New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning [J].
Lowary, PT ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 276 (01) :19-42
[23]   Torsional directed walks, entropic elasticity, and DNA twist stiffness [J].
Moroz, JD ;
Nelson, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14418-14422
[24]   Extracting DNA twist rigidity from experimental supercoiling data [J].
Neukirch, S .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :198107-1
[25]   Writhe formulas and antipodal points in plectonemic DNA configurations [J].
Neukirch, Sebastien ;
Starostin, Eugene L. .
PHYSICAL REVIEW E, 2008, 78 (04)
[26]   Single chromatin fiber stretching reveals physically distinct populations of disassembly events [J].
Pope, LH ;
Bennink, ML ;
van Leijenhorst-Groener, KA ;
Nikova, D ;
Greve, J ;
Marko, JF .
BIOPHYSICAL JOURNAL, 2005, 88 (05) :3572-3583
[27]   Nucleosome conformational flexibility and implications for chromatin dynamics [J].
Sivolob, A ;
Prunell, A .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1820) :1519-1547
[28]   Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs [J].
Sivolob, A ;
Prunell, A .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (05) :1025-1040
[29]   FLEXIBILITY OF NUCLEOSOMES ON TOPOLOGICALLY CONSTRAINED DNA [J].
Sivolob, Andrei ;
Lavelle, Christophe ;
Prunell, Ariel .
MATHEMATICS OF DNA STRUCTURE, FUNCTION AND INTERACTIONS, 2009, 150 :251-+
[30]   The elasticity of a single supercoiled DNA molecule [J].
Strick, TR ;
Allemand, JF ;
Bensimon, D ;
Bensimon, A ;
Croquette, V .
SCIENCE, 1996, 271 (5257) :1835-1837