SORPTION-ENHANCED STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION

被引:0
|
作者
Avendano, R. [1 ]
Dieuzeide, M. L. [1 ]
Bonelli, P. [2 ]
Amadeo, N. [1 ]
机构
[1] ITHES UBA CONICET, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[2] UBA, Fac Ciencias Exactas & Nat, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
关键词
CO2; sorbent; Ethanol steam reforming; CaO; Mayenite; THERMODYNAMIC ANALYSIS; CO2; CAO;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In last years, sorption-enhanced steam reforming of ethanol (SESRE) has become an interesting alternative for the industry, since it offers high H-2 purity with a simpler and smaller system. In this study CaO derived materials were synthesized to improve multicyclic CO2 sorption-desorption stability. A dispersant and inert phase (Ca12Al14O33) was incorporated into CaO structure. The effects of CaO:Ca12Al14O33 ratio on the characteristics of the new absorbents and on their performance in sorption-enhanced steam reforming of ethanol were analyzed. The results obtained indicate that the absorbent 85% CaO - 15% Ca12Al14O33 had significantly improved cyclic reaction stability. Additionally, it was proved that with this adsorbent CO purity on wet basis was lower than 2 %, making it possible to attain in only one reaction stage the CO purity obtained after de WGS reactor.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [21] Thermodynamic study for hydrogen production from bio-oil via sorption-enhanced steam reforming: Comparison with conventional steam reforming
    Xie, Huaqing
    Yu, Qingbo
    Lu, Han
    Zhang, Yuanyuan
    Zhang, Jianrong
    Qin, Qin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 28718 - 28731
  • [22] Sorption-enhanced steam reforming of ethanol for continuous high-purity hydrogen production: 2D adsorptive reactor dynamics and process design
    Wu, Yi-Jiang
    Li, Ping
    Yu, Jian-Guo
    Cunha, Adelino F.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING SCIENCE, 2014, 118 : 83 - 93
  • [23] Sorption-enhanced steam-methane reforming: CaO-CaCO3 Capture technology
    Cobden, P. D.
    Elzinga, G. D.
    Booneveld, S.
    Dijkstra, J. W.
    Jansen, D.
    van den Brink, R. W.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 733 - 739
  • [24] Sorption-enhanced methanol steam reforming for hydrogen production by combined copper-based catalysts with hydrotalcites
    Qi, Tongyichao
    Yang, Ying
    Wu, Yijiang
    Wang, Jin
    Li, Ping
    Yu, Jianguo
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2018, 127 : 72 - 82
  • [25] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    Chen YuMing
    Zhao YongChun
    Zhang JunYing
    Zheng ChuGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (11) : 2999 - 3008
  • [26] Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production
    Lee, Chan Hyun
    Mun, Sungyong
    Lee, Ki Bong
    JOURNAL OF POWER SOURCES, 2015, 281 : 158 - 163
  • [27] Sorption-enhanced steam reforming of ethanol on NiMgAl multifunctional materials: Experimental and numerical investigation
    Wu, Y. -J.
    Li, Ping
    Yu, J. -G.
    Cunha, A. F.
    Rodrigues, A. E.
    CHEMICAL ENGINEERING JOURNAL, 2013, 231 : 36 - 48
  • [28] Sorption-Enhanced Steam Reforming of Ethanol: Thermodynamic Comparison of CO2 Sorbents
    Wu, Yi-Jiang
    Diaz Alvarado, Felipe A.
    Santos, Joao C.
    Gracia, Francisco
    Cunha, Adelino F.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (05) : 847 - 858
  • [29] High Purity Hydrogen with Sorption-Enhanced Steam Methane Reforming in a Gas-Solid Trickle Bed Reactor
    Obradovic, Ana
    Levec, Janez
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (45) : 13302 - 13310
  • [30] Factorial design analysis of parameters for the sorption-enhanced steam reforming of ethanol in a circulating fluidized bed riser using CFD
    Phuakpunk, Kiattikhoon
    Chalermsinsuwan, Benjapon
    Putivisutisak, Sompong
    Assabumrungrat, Suttichai
    RSC ADVANCES, 2018, 8 (43) : 24209 - 24230