Fractional topological insulators: From sliding Luttinger liquids to Chern-Simons theory

被引:43
作者
Santos, Raul A. [1 ,2 ]
Huang, Chia-Wei [3 ]
Gefen, Yuval [2 ]
Gutman, D. B. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[3] Max Planck Inst Solid State Res, Stuttgart, Germany
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 20期
关键词
QUANTUM; SUPERCONDUCTORS; CONDUCTANCE; PHASE;
D O I
10.1103/PhysRevB.91.205141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The sliding Luttinger liquid approach is applied to study fractional topological insulators (FTIs). We show that a FTI is the low energy fixed point of the theory for realistic spin-orbit and electron-electron interactions. We find that the topological phase pertains in the presence of an interaction that breaks the spin invariance, and its boundaries are even extended by those terms. Finally we show that the one-dimensional chiral anomaly in the Luttinger liquid leads to the emergence of topological Chern-Simons terms in the effective gauge theory of the FTI state.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Probing Fractional Topological Insulators with Magnetic Edge Perturbations [J].
Beri, B. ;
Cooper, N. R. .
PHYSICAL REVIEW LETTERS, 2012, 108 (20)
[2]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[3]   Effective field theories for topological insulators by functional bosonization [J].
Chan, AtMa ;
Hughes, Taylor L. ;
Ryu, Shinsei ;
Fradkin, Eduardo .
PHYSICAL REVIEW B, 2013, 87 (08)
[4]   Topological BF field theory description of topological insulators [J].
Cho, Gil Young ;
Moore, Joel E. .
ANNALS OF PHYSICS, 2011, 326 (06) :1515-1535
[5]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[6]   REMARKS ON THE CANONICAL QUANTIZATION OF THE CHERN-SIMONS-WITTEN THEORY [J].
ELITZUR, S ;
MOORE, G ;
SCHWIMMER, A ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1989, 326 (01) :108-134
[7]  
Fradkin E. H., 2013, Field Theories of Condensed Matter Physics, V82
[8]   A class of P, T-invariant topological phases of interacting electrons [J].
Freedman, M ;
Nayak, C ;
Shtengel, K ;
Walker, K ;
Wang, ZH .
ANNALS OF PHYSICS, 2004, 310 (02) :428-492
[9]  
Giamarchi T, 2003, INT SERIES MONOGRAPH
[10]  
Gogolin A. O., 2004, Bosonization and Strongly Correlated Systems