Cosmological spacetimes not covered by a constant mean curvature slicing

被引:14
作者
Isenberg, J [1 ]
Rendall, AD
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Univ Oregon, Inst Theoret Sci, Eugene, OR 97403 USA
[3] Max Planck Inst Gravitat Phys, D-14473 Potsdam, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/15/11/025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that there exist maximal globally hyperbolic solutions of the Einstein-dust equations which admit a constant mean curvature Cauchy surface, but are not covered by a constant mean curvature foliation.
引用
收藏
页码:3679 / 3688
页数:10
相关论文
共 16 条
[2]   DETERMINATION OF CAUCHY SURFACES FROM INTRINSIC-PROPERTIES [J].
BUDIC, R ;
ISENBERG, J ;
LINDBLOM, L ;
YASSKIN, PB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :87-95
[3]  
CHOQUETBRUHAT Y, 1980, GEN RELATIVITY GRAVI
[4]  
CHOQUETBRUHAT Y, 1958, B SOC MATH FRANCE, V86, P155
[5]  
CHOQUETBRUHAT Y, 1974, RUSS MATH SURV, V29, P327
[6]  
COURANT R, 1989, METHODS MATH PHYSICS, V2, pCH6
[7]   TIME FUNCTIONS IN NUMERICAL RELATIVITY - MARGINALLY BOUND DUST COLLAPSE [J].
EARDLEY, DM ;
SMARR, L .
PHYSICAL REVIEW D, 1979, 19 (08) :2239-2259
[8]  
Hawking S. W., 1973, The Large Scale Structure of Space-Time
[9]   A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds [J].
Isenberg, J ;
Moncrief, V .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (07) :1819-1847
[10]  
Joshi PS, 1993, GLOBAL ASPECTS GRAVI