Hamilton-Jacobi Formulation for Systems in Terms of Riesz's Fractional Derivatives

被引:12
作者
Rabei, Eqab M. [1 ]
Rawashdeh, Ibrahim M. [1 ]
Muslih, Sami [2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Al al Bayt Univ, Dept Phys, Mafraq, Jordan
[2] So Illinois Univ, Dept Mech Engn, Carbondale, IL 62901 USA
[3] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele 76900, Romania
关键词
Fractional calculus of variation; Lagrangian formulation; Hamiltonian formulation; Hamilton-Jacobi formulation and Riesz fractional derivatives; DYNAMICS;
D O I
10.1007/s10773-011-0668-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents fractional Hamilton-Jacobi formulations for systems containing Riesz fractional derivatives (RFD's). The Hamilton-Jacobi equations of motion are obtained. An illustrative example for simple harmonic oscillator (SHO) has been discussed. It was observed that the classical results are recovered for integer order derivatives.
引用
收藏
页码:1569 / 1576
页数:8
相关论文
共 18 条
[1]  
Agrawal O., 2004, Fractional Derivatives and Their Applications, Nonlinear Dynamics
[2]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[3]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[4]  
AGRAWAL OP, 2006, P MME06 ANK TURK
[5]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[6]  
BALEANU D, 2005, FRACTIONAL DIFFERENT
[7]  
BALEANU D, 2005, INTELLIGENT SYSTEMS, V2
[8]   New applications of fractional variational principles [J].
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) :199-206
[9]   Fractional Hamiltonian analysis of irregular systems [J].
Baleanu, Dumitru .
SIGNAL PROCESSING, 2006, 86 (10) :2632-2636
[10]  
Carpinteri A., 1997, Fractals and Fractional Calculus in Continuum Mechanics