Existence of strong solutions to the equations of unsteady motion of shear thickening incompressible fluids

被引:7
作者
Bae, Hyeong-Ohk [1 ]
Wolf, Joerg [2 ]
机构
[1] Ajou Univ, Dept Financial Engn, Suwon 441749, South Korea
[2] Humboldt Univ, D-10099 Berlin, Germany
基金
新加坡国家研究基金会;
关键词
Shear thickening fluid; Strong solution; Weighted estimate; Difference quotient; Non-Newtonian fluid; Short time regularity; GENERALIZED NEWTONIAN FLUIDS; WEAK SOLUTIONS;
D O I
10.1016/j.nonrwa.2014.12.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the existence of strong solutions to a system of equations of motion of an incompressible non-Newtonian fluid. Our aim is to prove the short-time existence of strong solutions for the case of shear thickening viscosity, which corresponds to the power law v(D) = vertical bar D vertical bar(q-2) (2 < q < +infinity). In particular, we find that global strong solutions exist whenever q > 2.23 .... The results are obtained by flattening the boundary and by using the difference quotient method. Near the boundary, we use weighted estimates in the normal direction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:160 / 182
页数:23
相关论文
共 16 条
[1]  
Astarita G., 1974, Principles of Non-Newtonian Fluid Mechanics
[2]  
Bae H.-O., BOUNDARY REGUL UNPUB
[3]  
Bae HO, 2000, HOUSTON J MATH, V26, P387
[4]  
Beirao da Veiga H., 2005, COMMUN PUR APPL MATH, V58, P552
[5]   Existence of Strong Solutions for Incompressible Fluids with Shear Dependent Viscosities [J].
Berselli, Luigi C. ;
Diening, Lars ;
Ruzicka, Michael .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (01) :101-132
[6]   LP-theory for a class of non-newtonian fluids [J].
Bothe, Dieter ;
Pruess, Jan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :379-421
[7]   On uniqueness and time regularity of flows of power-law like non-Newtonian fluids [J].
Bulicek, Miroslav ;
Ettwein, Frank ;
Kaplicky, Petr ;
Prazak, Dalibor .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (16) :1995-2010
[8]   Concerning the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations [J].
da Veiga, Hugo Beirao .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (05) :249-252
[9]   Boundary Regularity of Shear Thickening Flows [J].
da Veiga, Hugo Beirao ;
Kaplicky, Petr ;
Ruzicka, Michael .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (03) :387-404
[10]   Strong solutions for generalized Newtonian fluids [J].
Diening, L ;
Ruzicka, M .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :413-450