Spectral analysis for a multi-dimensional split-step quantum walk with a defect

被引:2
作者
Fuda, Toru [1 ]
Narimatsu, Akihiro [2 ]
Saito, Kei [3 ]
Suzuki, Akito [4 ]
机构
[1] Kokushikan Univ, Sch Sci & Engn, Setagaya Ku, Tokyo 1548515, Japan
[2] Yokohama Natl Univ, Grad Sch Sci & Engn, Yokohama, Kanagawa 2408501, Japan
[3] Kanagawa Univ, Fac Engn, Yokohama, Kanagawa 2218686, Japan
[4] Shinshu Univ, Fac Engn, Wakasato, Nagano 3808553, Japan
关键词
Quantum walks; Spectral analysis; Localization; Time-averaged limit measure;
D O I
10.1007/s40509-021-00258-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the spectrum of a multi-dimensional split-step quantum walk with a defect that cannot be analyzed in previous papers by Fuda et al. (Quantum Inf Process 18:203-226, 2017; J Math Phys 59:082201, 2018). To this end, we have developed a new technique which allow us to use a spectral mapping theorem for the one-defect model. We also derive the time-averaged limit measure for one-dimensional case as an application of the spectral analysis.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 23 条
[1]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[2]   Renormalization group analysis of spectral problems in quantum field theory [J].
Bach, V ;
Frohlich, J ;
Sigal, IM .
ADVANCES IN MATHEMATICS, 1998, 137 (02) :205-298
[3]   Probability distributions for Markov chain based quantum walks [J].
Balu, Radhakrishnan ;
Liu, Chaobin ;
Venegas-Andraca, Salvador E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
[4]  
Bednarska M, 2003, PHYS LETT A, V317, P21, DOI 10.1016/j.physieta.2003.08.023
[5]   ONE-DIMENSIONAL QUANTUM WALKS WITH ONE DEFECT [J].
Cantero, M. J. ;
Gruenbaum, F. A. ;
Moral, L. ;
Velazquez, L. .
REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (02)
[6]  
Endo T, 2015, QUANTUM INF COMPUT, V15, P105
[7]   UNIFIED THEORY OF NUCLEAR REACTIONS [J].
FESHBACH, H .
ANNALS OF PHYSICS, 1958, 5 (04) :357-390
[8]   Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations [J].
Fuda, Toru ;
Funakawa, Daiju ;
Suzuki, Akito .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
[9]   Localization of a multi-dimensional quantum walk with one defect [J].
Fuda, Toru ;
Funakawa, Daiju ;
Suzuki, Akito .
QUANTUM INFORMATION PROCESSING, 2017, 16 (08)
[10]   Spectral and asymptotic properties of Grover walks on crystal lattices [J].
Higuchi, Yusuke ;
Konno, Norio ;
Sato, Iwao ;
Segawa, Etsuo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4197-4235