Casimir effect and deconfinement phase transition

被引:19
作者
Chernodub, M. N. [1 ,2 ]
Goy, V. A. [2 ]
Molochkov, A. V. [2 ]
机构
[1] Univ Tours, UMR 7350, Labe Math & Phys Theor, F-37200 Tours, France
[2] Far Eastern Fed Univ, Lab Phys Living Matter, Sukhanova 8, Vladivostok 690950, Russia
关键词
QUANTUM; FORCE;
D O I
10.1103/PhysRevD.96.094507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the Casimir effect may lead to a deconfinement phase transition induced by the presence of boundaries in confining gauge theories. Using first-principle numerical simulations we demonstrate this phenomenon in the simplest case of the compact lattice electrodynamics in two spatial dimensions. We find that the critical temperature of the deconfinement transition in the vacuum between two parallel dielectric/metallic wires is a monotonically increasing function of the separation between the wires. At infinite separation the wires do not affect the critical temperature while at small separations the vacuum between the wires loses the confinement property due to modification of vacuum fluctuations of virtual monopoles.
引用
收藏
页数:12
相关论文
共 39 条
  • [1] LARGE-N LIMIT OF THE HEISENBERG-HUBBARD MODEL - IMPLICATIONS FOR HIGH-TC SUPERCONDUCTORS
    AFFLECK, I
    MARSTON, JB
    [J]. PHYSICAL REVIEW B, 1988, 37 (07) : 3774 - 3777
  • [2] Betti A., ARXIV170808805
  • [3] BLOCKI J, 1977, ANN PHYS-NEW YORK, V105, P427, DOI 10.1016/0003-4916(77)90249-4
  • [4] QUANTUM-FIELD THEORETIC TREATMENT OF THE CASIMIR EFFECT
    BORDAG, M
    ROBASCHIK, D
    WIECZOREK, E
    [J]. ANNALS OF PHYSICS, 1985, 165 (01) : 192 - 213
  • [5] Bordag M., 2009, Advances in the Casimir Effect
  • [6] Measurement of the Casimir force between parallel metallic surfaces
    Bressi, G
    Carugno, G
    Onofrio, R
    Ruoso, G
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (04) : 4
  • [7] Casimir H B G., 1948, Proc. K. Ned. Akad. Wet., V51, P793, DOI DOI 10.4236/WJNSE.2015.52007
  • [8] THE INFLUENCE OF RETARDATION ON THE LONDON-VANDERWAALS FORCES
    CASIMIR, HBG
    POLDER, D
    [J]. PHYSICAL REVIEW, 1948, 73 (04): : 360 - 372
  • [9] Nonperturbative Casimir effect and monopoles: Compact Abelian gauge theory in two spatial dimensions
    Chernodub, M. N.
    Goy, V. A.
    Molochkov, A. V.
    [J]. PHYSICAL REVIEW D, 2017, 95 (07)
  • [10] Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions
    Chernodub, M. N.
    Goy, V. A.
    Molochkov, A. V.
    [J]. PHYSICAL REVIEW D, 2016, 94 (09)